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Preface 

Artificial intelligence (AI) is transforming healthcare domain by automating and 
improving diagnosis and treatment. AI is an ever-growing field using multiple 
subsets, including machine learning, deep learning, natural language processing, and 
expert systems. When applied in the field of healthcare, AI has the potential to greatly 
impact diagnostics, treatment, care, operational efficiency, drug discovery and devel-
opment. Increasingly, artificial intelligence has been used in diagnostics, helping to 
identify nodules or cancers, predict cardiovascular risk, and provide personalized 
care for chronic patients. 

Various AI models and algorithms, such as convolutional neural networks, deci-
sion trees, and support vector machines, among others, have been used to analyze 
medical imaging data to predict brain tumor biopsy results, cardiovascular disorder, 
breast cancer and many other critical diseases. AI methods can also be used to analyze 
high-throughput immunological data for personalized care. These techniques include 
machine learning, deep learning, and reinforcement learning, based on mathematical, 
computational, and statistical concepts, and complement immunological research. 
Benchmark healthcare datasets should encompass at least one million total samples 
and larger cohorts to yield generalization and interoperability in healthcare. High 
quality medical datasets should consist of, but are not limited to, imaging data, clin-
ical data, and genomic longitudinal data to mitigate the impact of AI-bias in the 
predictive outcomes. Apart from clinical datasets, there are certain challenges found 
in developing robust medical devices, which include the exploitation of AI in medical 
signal processing, analysis, and interpretation to create smart healthcare system that 
can utilize expertise-based knowledge and generate solutions. These solutions can 
accurately refine the identification, diagnosis, as well as therapy of diseases that must 
be safe, secure, interoperable, and efficient. The early and several benefits of modern 
healthcare technologies include remote patient monitoring, aiding in early diagnosis, 
facilitating advanced treatment recommendations for a wider general population, 
and allowing the unprecedented potential for data sharing, collaboration, and knowl-
edge build-up is possible with the incorporation of AI in healthcare models. To
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efficiently manage modern clinical needs, many AI algorithms are proposed in dedi-
cated systems including data resource utilities, individual and group support systems, 
and methods for AI-based classification and predictive modeling. 

This book provides a critical overview of AI technologies in the early prediction 
of chronic diseases and preventing casualties. The book comprises of four parts elab-
orating on modern healthcare, applications, personalized care and benefits of smart 
healthcare using AI. Part I contains two chapters. Chapter 1 titled “Introduction to 
Artificial Intelligence in Modern Healthcare” details the various AI techniques that 
provide quick, and accurate solutions for transforming treatment using conventional 
methods of healthcare. Chapter 2 titled “Research Orientation for AI Techniques in 
Modern Healthcare System” discusses the various aspects and research methodolo-
gies currently used in applying AI techniques to realize a smart healthcare-oriented 
scenario. The great potential of AI depicts the need to reorient and broaden the 
research interests and focus on modern healthcare systems. 

Part II titled “Applications of Artificial Intelligence for Disease Prediction” has 
six chapters describing various applications and benefits of AI techniques that can 
be used for diagnosis and prediction of chronic diseases. In this, Chap. 3 titled 
“Diagnosis and Prediction of Brain Tumor Using Artificial Intelligence” elaborates 
on the benefits of AI tools and algorithms in diagnosing and predicting brain tumors, 
particularly in the context of oncology. These tools have the ability to analyze large 
amounts of brain imaging data, such as magnetic resonance imaging (MRI) and 
computer tomography (CT) scans, and identify features and patterns typically not 
detectable by human radiologists, thereby increasing the accuracy of diagnosis and 
prognosis assessment. Chapter 4 titled “Diagnosis and Prediction of Neurological 
Disorders Using Artificial Intelligence” details the main idea of diagnosing and 
predicting a neurological disorder using the latest techniques from imaging, text and 
signaling data. Chapter 5 titled “Diagnosis and Prediction of Cardiovascular Disorder 
Using Artificial Intelligence” elaborates on various AI techniques that can predict 
cardiovascular disorders at an early stage. AI-based data-driven algorithms permit 
computers to learn gradually and help in the decision-making process for predicting 
cardiovascular disorders by scrutinizing the diverse range of health data, including 
electrocardiograms, intervascular ultrasound, genetic, lifestyle, environmental risk 
factors, and cardiac imaging studies. Chapter 6 titled “Diagnosis and Prediction of 
Cardiovascular Risk in Retinal Imaging Using Artificial Intelligence” discusses the 
importance of identifying bioindicators and diabetic retinopathy imaging for the 
prediction of cardiovascular disease at an early stage. AI systems based on deep 
neural networks are able to predict the occurrence of some adverse events after the 
diagnosis of diabetes or hypertension in retinopathy imaging. This has opened up new 
therapeutic possibilities for ophthalmologists as retinal photography has been found 
to be a great indicator to predict risk for heart disease, a study that has brought about 
endless possibilities of collaboration between ophthalmologists and cardiovascular 
specialists. Chapter 7 titled “Diagnosis and Prediction of Diabetic Foot Ulcer in 
Modern Healthcare Using Artificial Intelligence” elaborates on the identification of 
diabetic foot disease (DFU) using AI. DFU data are integrated from foot images and 
clinical assessments such as ABI, pulses, and vibration perception threshold to carry
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out diagnosis and determine if the patients are at high risk of developing another foot 
ulcer or requiring an amputation. A large amount of data is collected from patients 
in each study to indicate the significant improvement in the stratification of high risk 
along with increased predictive power. Chapter 8 titled “Diagnosis and Prediction 
of Breast Cancer Using Artificial Intelligence” elaborates on the severity of breast 
cancer in high-income countries. These abnormalities can occur in a woman’s body 
gradually and lead to the development of cancer, usually in a few years. Treatment 
is easier when breast cancer is diagnosed early; early-stage patients have improved 
outcomes following appropriate treatment. Several AI techniques are reviewed which 
analyze mammograms and other types of medical imaging in an attempt to detect 
breast cancer early. 

Part III contains four chapters presenting the improvement and benefits offered 
by AI for personalized care. For this, Chap. 9 titled “Role of Artificial Intelligence in 
Immunology” details the potential impact of AI in genetic and protein analyses. There 
has been a shift from single markers to analyzing millions of markers in a compre-
hensive genome-wide or proteome-wide approach. AI methods are analyzed for 
processing such complex data sets. Chapter 10 titled “Managing High-Risk Surgery 
Using Artificial Intelligence” presents the precision and high-ranking decision-
making algorithms that are needed for high-risk surgery and make it a natural area 
for the development and introduction of AI. AI tools for precision surgery are used to 
predict complications that may arise for a particular patient when decisions are made 
by the surgery based on information collected by MRI, CT, medical history and exam-
ination. There are three main areas where AI can play a beneficial role in precision 
medicine: (1) preoperative assessment, (2) surgical planning, and (3) postoperative 
monitoring, which is highlighted in this chapter. AI systems are designed to predict 
complications that can support experienced surgeons, perioperative physicians, and 
nursing staff in the assessment of risk and further management of patients. Chapter 11 
titled “Benchmark Datasets for Analysis in Medical Systems” compiles the various 
datasets crucial for the performance review of AI models within medical systems. It 
emphasizes that benchmark datasets are essential to achieve reproducible and reli-
able results in modern healthcare. Benchmark datasets consist of training datasets, 
which are used to develop and train the AI model, and testing datasets, which are 
used to validate the model before real-time deployment. Chapter 12 titled “Role 
of AI and Modern Medical Equipment in Smart Healthcare” summarizes AI and 
medical equipment as evolving complementary tools for delivering smart healthcare 
services. Advanced medical equipments are analyzed to gather physiological signals 
for clinical indexes and integrate them to suggest a tentative diagnosis. Based on the 
accumulated data input, the medical equipment generates a personalized treatment 
for every patient. 

Part IV titled “Artificial Intelligence for Healthcare Digitization” contains three 
chapters. Chapter 13 titled “Evolution of Traditional Healthcare to Modern Health-
care—Benefits, Opportunities and Challenges” discusses the significant reforms 
in modern healthcare treatments. It complies the various methodologies the way 
diseases are diagnosed within the human body, the mode of treatments, medications 
prescribed, and the research protocols. The conventional labor-intensive treatment
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procedures are slowly moving to a modern era of personalized precision medicine 
for the betterment of a human approach, and it would not have been possible without 
the utility of advanced technologies as a key integrator. Chapter 14 titled “Analysis of 
AI-Bias in Modern Healthcare Systems” details the development of AI-based models 
in healthcare and the introduced bias in the outcomes. AI models promise to leverage 
this data for better diagnoses, more precise treatment decisions, and improved patient 
outcomes. Despite serving diverse patient populations, existing healthcare data may 
not be representative of everyone in a given community and can be subject to socioe-
conomic and cultural biases in healthcare AI models that reflect and propagate 
existing disparities in care and outcomes. Various bias analyses and suggestions 
for its mitigation are also highlighted in this chapter. The last Chap. 15 titled “Exam-
ining QoS for Modern Healthcare Systems” advances the successful deployment of 
modern healthcare systems and benefits from advancements in the field of AI, such 
as using big data technologies or deep learning, which requires awareness of quality 
of service (QoS) concepts. It discusses the QoS and how effectively AI-based clin-
ical systems perform over a variety of parameters to provide accurate diagnosis and 
treatment. In many application domains, imperious data requirements and high costs 
to maintain these standards require additional performance metrics to account for 
the reliability of digital service at the manipulation layer of these applications. 

This book summarizes several changes that are currently taking place or are 
expected to take place with the potential of AI in the healthcare and medical fields. It 
will interest the various stakeholders to deeply understand the changes, difficulties, 
empathy, and insights, and to eventually establish new processes and rules. This book 
has carefully explained the scientifically proven important facts about the impact of 
AI in establishing the modern healthcare system and the potential to be the most 
crucial factor in determining the type of delivery system that healthcare pursues in 
future. 

Greater Noida, India Ashish Kumar 
Divya Singh
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Part I 
Artificial Intelligence in Modern 

Healthcare



Chapter 1 
Introduction to Artificial Intelligence 
in Modern Healthcare 

Abstract With the advancement in technology, traditional healthcare has evolved to 
provide improved and accurate diagnosis of critical diseases to save mankind. Tradi-
tional healthcare techniques are integrated with artificial intelligence (AI) for early 
prediction of disease so that proper and personalized treatment can be extended. In 
modern healthcare system, AI have either machine learning or deep learning tech-
niques which provide quick and automatic solution for prediction of critical diseases 
such as mental illness, brain tumor, cardiovascular disorder at an early state. The 
application of machine learning and deep learning models for prediction and prog-
nosis of these diseases has become an irrevocable part of medical treatment aimed 
at improving the subsequent therapy and management of patients. In this chapter, 
we have discussed the overview of various machine learning and deep learning tech-
niques which are proposed to address the needs of the patient and provide medical 
aid at an early stage of the disease. 

Keywords Artificial intelligence (AI) ·Machine learning (ML) · Deep learning 
(DL) ·Modern healthcare · Smart healthcare · Digital healthcare 

1.1 Overview of AI in Modern Healthcare 

Artificial intelligence (AI) has diversified applications in various fields such as educa-
tion [1], sentiment analysis [2], computer vision [3] and many more [4–7]. AI has 
also revolutionized traditional healthcare by providing early, quick and accurate 
predictions of critical diseases such as brain tumor [8], cardiovascular disorders 
(CVD) [9], cervical cancer [10] and many more [11–14]. AI have utilized either 
machine learning (ML) or deep learning (DL) algorithms for processing medical 
imaging data such as X-ray, magnetic resonance imaging (MRI), ultrasound (USd), 
and computed tomography (CT). Apart from imaging data, biomedical signals such as 
electrocardiogram (ECG), and electroencephalography (EEG) are also investigated 
for predicting health disorders. In addition, textual data, namely electronic health
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4 1 Introduction to Artificial Intelligence in Modern Healthcare

records (EHR), tweets, comments, opinions from social media are also very effec-
tive in predicting critical disorders in human beings. Generative AI models such as 
ChatGPT, natural language processing, are also helpful in improving the treatment 
accuracy and extending personalized treatment to the patients [4, 15]. Figure 1.1 
represents the categorization of various AI techniques such as ML, DL or generative 
AI. 

ML based algorithms can be categorized either as supervised learning or unsu-
pervised learning [16, 17]. Treatment accuracy can be alleviated by using labeled 
medical data in supervised learning algorithms and the commonly adopted algo-
rithms in this category are support vector machine (SVM), random forest (RF), deci-
sion trees (DT), XGboost and many others which are used for disease classification. 
On the other hand, effective representation of medical data from raw unlabeled data 
is processed using unsupervised learning algorithms which comprise of clustering 
and dimensionality reduction techniques exploited for disease prediction and reliable 
clinical diagnoses. Authors have adopted supervised ML algorithms for classifica-
tion of cells in brain tumors and breast cancer imaging either as malignant or benign 
[18–21]. On the other hand, clustering techniques and dimensionality reduction also

Fig. 1.1 Categorization of AI in medical domain 
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adopted for providing better results in low resolution imaging [22, 23]. Suppression of 
noise, contrast and resolution enhancements in medical imaging are adopted during 
pre-processing process for improving segmentation accuracy of these algorithms. 
Clinical measurements using ML algorithms focus to minimize the generalizability 
gaps on different databases and ensure to have better treatment plans with quick and 
accurate prediction accuracy. 

On the other hand, DL algorithms utilize convolutional neural networks (CNN), 
recurrent neural networks (RNN), U-Net and long short-term memory (LSTM) 
networks for extracting sensitive and essential information from the various clin-
ical datasets for predicting life-threatening diseases at an early stage [24–28]. In 
order to prevent the spread of disease such as cancer and tumors, it is crucial to 
determine its vital markers such as size, shape and location accurately. To under-
stand its appearance and risk factors, the medical imaging is processed using DL 
models. DL models provide advanced techniques and optimize critical parameters 
substantial for highly efficient computational models for disease predictions. This is 
one of the invasive techniques that can identify the criticality of the disorders and 
save money by eliminating the need for expensive medical tests. It improves the 
decision making of doctors and medical practitioners by predicting advanced level 
diseases effectively. 

Hybrid approaches are also quite popular in reducing the prediction of critical 
diseases by processing the large amount of data in less time. These techniques 
exploited DL techniques for extracting robust features and ML techniques for classi-
fication for these features either as benign or malignant [29, 30]. The robust feature 
extraction and selection is adopted for determining the sensitive features from various 
medical imaging. These features are processed using either DL models or any other 
efficient techniques. These features are fed to the ML-based classifier for identifi-
cation of the advanced diseases. ML-classifiers perform either binary or multi-class 
classification for computing the criticality of diseases such as foot ulcer, neurolog-
ical disorder and cancerous cells. In other directions, Attentional mechanisms are 
also incorporated into the prediction algorithms for extracting the relevant features 
from the target regions and neglecting the irrelevant features [31–33]. These algo-
rithms are faster in computing the outcomes as only a limited area needs to be 
processed. Also, the recent algorithms incorporating encoder and decoder networks 
are widely explored in medical domain for providing enhanced treatment accuracy. 
In this direction, vision transformer (ViT), Swim transformers are few to name [34, 
35]. These algorithms can process the medical data faster to provide accurate and 
timely information for initiating proper treatment. 

Generative AI includes large language models (LLM) and natural language 
processing (NLP) which are significant in revolutionizing the medical decision-
making process [15]. LLM models have a wide range of applications in various 
radiological specific datasets. These models can automatically generate radiological 
reports from small sets of keywords, provide diagnosis based on imaging patterns, 
suggest report summarization for effective treatment and many more. Similarly, NLP 
has been identified to have potential applications in healthcare management systems
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along with LLMs [36, 37]. NLP is specifically used with transformer-based algo-
rithms and performs various tasks such as text classification, and extraction. These 
models can also automate the process of data curation for computing the signifi-
cant findings from the patient’s medical data. The potential of NLP is explored in 
ChatGPT, a transformer-based method [15]. This chatbot with user-friendly interface 
provides detailed analysis of medical imaging with quick and accurate diagnosis and 
segmentation. 

This book comprises extensive discussion about the recent, advanced and inno-
vative techniques for revolutionizing medical healthcare. For this, AI-based algo-
rithms are reviewed to emphasize their need for integrating into traditional healthcare 
methodologies for quick and efficient diagnosis and prognosis of critical disease. AI-
based algorithms are widely used for predicting brain tumors, breast cancer, diabetic 
foot ulcer, neurological disorders and many other life-threatening diseases. The vast 
availability of medical imaging data reduces the effectiveness of the traditional 
healthcare system. The outcomes of these medical imaging are highly dependent 
on the expertise and experience of the radiologist. Secondly, it is time consuming 
to analyze medical imaging data such as MRI, and CT, which contain numerous 
images for processing manually. Hence, to provide effective, fast and personalized 
treatment AI-based techniques are widely explored. In this book, we have summa-
rized the available potential work to predict critical disease and the imaging data 
publicly available for analysis and prediction. 

1.1.1 Challenges in Traditional Healthcare Systems 

Traditional healthcare systems have certain limitations which restrict the timely 
approachability to patients suffering from critical diseases [38, 39]. Traditional 
healthcare system is incompetent to provide affordable, quick and accurate medical 
facilities to patients [40]. It has many concerns related to data analysis, trust, relia-
bility, self-reliance and many more. It is difficult to provide early medical aid and 
healthcare services to the people living in remote areas. Providing the best medical 
assistance in emergency cases is still challenging as the latest methodology yet to 
be deployed properly. The limitations of traditional healthcare can be addressed by 
adopting advanced technologies such as ML, DL, and NLP. These technologies can 
revolutionize the traditional system by providing smart and innovative healthcare 
services. Hence, it is essential to understand the limitations of traditional health-
care systems to improve the quality of life significantly. Figure 1.2 represents the 
limitations of the traditional healthcare systems, and the details are as follows:

Data analysis: A lot of medical data is produced by various medical imaging 
techniques such as CT, MRI and Ultrasound (USd) scans. It is tedious as well as 
time consuming to analyze such huge amounts of data manually. Also, the inference 
from these data highly depends on the expertise and experience of the radiologist.
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Fig. 1.2 Limitations of traditional healthcare systems

However, the modern healthcare system addresses this limitation of traditional health-
care systems by exploiting the latest technologies. The analysis is not only fast but 
also accurate, which is helpful for doctors to make better decisions. 

Trustworthiness and reliability: The traditional healthcare system is not very much 
trustworthy and reliable. The reason could be total dependency on human resources 
for diagnosis and prognosis. In some cases, the existence of disease in a patient 
was detected in its last stage as the symptoms were not very clear and precise to 
be captured manually. The innovation in traditional healthcare is now helpful for 
capturing and detecting critical disease such as cancer at an early stage to save lives 
[11]. 

Efficiency and effectiveness: Traditional techniques in healthcare are not very effi-
cient and effective in early prognosis of disease. The reason could be less accessibility 
for better medical facilities to the people living in remote areas. The effectiveness 
of treatment is not efficient either due to the disease detected in its last stage or 
non-availability of treatment facilities at initial stage of disease. 

Availability of expertise: Traditional healthcare system is manual and depends on 
the proficiency of medical professionals. There is limited availability of specialists 
which can cure critical diseases. This limitation can be addressed by incorporating
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the latest technology such as IoT and robotics in medical systems which not only 
save time but also more accurately treat the disease. 

Limitations for personalized treatment: One of the major facilities of smart health-
care is that it provides personalized treatment to the patients by studying the vital 
parameters such as family history, smoking habits, genetics analysis, and medical 
biomarkers. Analysis of so many parameters for providing personalized treatment 
is not possible in traditional healthcare systems. In [41], authors analyzed multi-
dimensional components such as genetic history, functional parameters and influ-
ential environmental attributes for providing personalized medical for preventing 
cardiovascular disorders and cancers. 

Physical availability of medical practitioners: Traditional healthcare emphasizes 
the need for physical examination and medical consultation only. However, due 
to limited time and non-availability of efficient medical facilities, it is not always 
possible to visit the doctors physically. To address this challenge, smart healthcare 
has introduced tele consultations which reduces the number of physical visits to the 
clinic or hospital and effective in providing primary care to the patients [42]. This 
facility also helps in preventing the spread of deadly diseases such as COVID 19. 
Tele consultations proved to be effective for managing people’s health in lockdown 
during COVID19. 

Self-reliant healthcare: Traditional healthcare demands all the decisions, measure-
ments and analysis to be taken by medical practitioners only. However, smart health-
care provides self-wearable devices equipped with IoT technology for continuous 
monitoring of the patient’s health. The user can manage its health condition with the 
help of Apps and information platforms [43]. The data can be understandable to a 
user and routed to doctor for further analysis. 

Geographical barriers: Geographical limitations is one of the biggest barriers in 
traditional healthcare systems which prevent the accessibility of superior medical 
services to the people living in remote areas. In smart healthcare systems, various 
features such as tele consultations, IoT-based wearable devices, personalized 
healthcare provides reliable treatment in case of emergency. 

1.2 Evolution from Traditional Healthcare to Digital 
Healthcare 

Traditional healthcare system is transforming into smart healthcare to make it 
more intelligent, accessible and accurate. Smart healthcare is not only technolog-
ical advancement of traditional healthcare system but enhances the medical care, 
services and experience to the participants. 

There are some chronic diseases such as breast cancer, brain tumor, and CVD 
whose timely management is necessary to prevent casualties. These diseases are 
curable if predicted at their early stage [11, 34, 44–47]. As the number of patients with 
such diseases is increasing gradually, traditional healthcare systems which are manual
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and doctoral centric are incapable to provide proper care and treatment. Hence, smart 
healthcare emerges with innovative solutions for better management of diseases. 
Firstly, smart healthcare emphasizes the need for AI-based prediction algorithms 
and self-monitoring of patients for improved management of such life-threatening 
diseases. AI-based prediction algorithms can predict the spectrum of these diseases 
for managing their long-term effects efficiently. Secondly, smart healthcare also 
suggested on continuous monitoring of patient’s vitals and substantial parameters 
through wearable intelligent devices for timely actions to improve quality of life. 

1.2.1 AI and Digitization to Healthcare 

Digital innovation of the healthcare sector improves the patient’s care and manage-
ment of critical diseases effectively. Digital transformation offers e-health services 
that includes the incorporation of tele consultation, management of electronic health 
record, IoT-based wearable devices for providing health monitoring round the clock 
[48]. Healthcare digitization offers several advantages such as automatic disease 
prediction, real-time health monitoring, data driven decision making and self-reliant 
patients. 

Healthcare digitization offers several benefits to manage the patient’s health effi-
ciency. The healthcare digitization introduces the concept of tele consultation which 
allows remote monitoring of the patient’s health by providing virtual online appoint-
ments. This facility allows the accessibility of the best medical services to the people 
living in rural areas. This has eliminated the geographical barriers by providing cost 
effective superior medical facility. Another benefit of digitized healthcare is person-
alized medical facilities for the patient’s suffering from mental disorders, and CVD. 
Personalized treatment includes a study of patient’s genetics and genomics to provide 
effective medical care. Smart healthcare with recent technologies and IoT makes it 
possible to provide personalized care for faster recovery. 

To summarize, digitization of healthcare offers a wide range of benefits along 
with continuous health monitoring with the help of smart devices such as watches, 
mobile apps, and other wearable devices. The data collected will be transferred to 
the medical practitioners in real-time to take necessary actions. The data can also be 
further analyzed with the help of AI-based techniques such as ML and DL to predict 
critical diseases at an early stage. 

1.2.2 Smart Healthcare Wearable Devices 

Smart healthcare wearables are one of the technological advancements in medical 
systems which can track and monitor a person’s health continuously. These devices 
can help in providing personalized healthcare along with preventive medicines by 
understanding the patient’s requirements from the data gathered by wearable devices
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[49]. The data is streamed to the clinical staff for analysis in real-time. These devices 
reduce physical visits to the doctor and limit communication between the patient and 
the clinical staff. The data is helpful in predicting chronic diseases at an early stage 
and efficient decision-making by the doctors. These devices can track day-to-day 
activities and recommend exercises for the physical well-being of the patients. 

Mainly, wearable devices in healthcare can perform four activities namely, moni-
toring, screening, detection and prediction [50]. These devices can monitor pulse, 
heartbeat, and physical activity of the person. Continuous screening of cardiac, and 
sleep is possible using these devices. These devices can detect and predict clin-
ical risk, less physical activities and early symptoms of any health-related prob-
lems. Respiratory rate data, biological age, irregular pulse, biomedical condition 
and mortality captured from wearable devices can be used for predicting pulmonary 
diseases and neurological disorders. 

The data from wearables has certain limitations and concerns which need to be 
addressed before its adoption to the public [50]. The concerns are related to its 
quality, design, technicality, security and privacy. The quality of the product should 
be high and accurate to ensure the correctness of the data. High quality sensors 
and accelerometers should be used for capturing error free data. The design of the 
wearables plays a crucial role in its usage. People prefer to wear healthcare devices 
in the form of bands and watches if the device design is attractive. Designing these 
devices should be attractive enough so that individuals prefer to wear them. The 
interface of such devices should be user-friendly so that individuals with less scientific 
knowledge and older people can be able to operate it with ease. The available patterns 
and features should be simple but powerful in screening the potential vitals of the 
patients. Other concerns are related to security risks and privacy issues associated 
with the gathered data and its usage. The data protection and security laws must be 
appropriately deployed in order to achieve the trust and fairness of the users. 

To summarize, smart wearables in healthcare are a superior support for moni-
toring and detecting patient’s vital in real-time. Gathered data quality and accuracy 
should be accessed properly before its usage to the patients. The variability in the 
sensors, different data collection processes and interpretability of results must be 
clinically validated to ensure the high-quality standards and interoperability of the 
devices. Clinical validation is a crucial step to ensure the reliable performance of 
these devices. In addition, these wearable devices should also be validated for gender 
equality. It must be ensured that there is no AI-bias in these devices due to missing 
sociodemographic data, ethnicity, age and nationality. For wider acceptability of 
wearable devices, it is necessary to consider ethical, legal and social requirements 
before its deployment to realistic scenarios.
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1.3 AI-Bias in Modern Healthcare Systems 

AI-based prediction models are high in demand in modern healthcare systems as 
these models can predict chronic disease accurately at an early stage. However, these 
models are accessed to be suffered from AI-bias which leads to the non-reliable 
outcomes and unseen classifications [51]. In AI-based prediction models AI-bias 
can be introduced either through data or algorithmic design. Broadly, data bias is 
dependent on dataset selection, sampling and missing historical information. Also, 
data bias can be introduced due to model training on insufficient, partial and incom-
plete datasets. The missing values are not handled properly, which creates inconsis-
tencies in the clinical outcomes. The surrogate data is not accessed rightly for its 
incorporation in the datasets. All these will corrupt the model and biased its output. 

Algorithmic bias in AI-models is introduced due to its weak design, missing 
training-test specifications, hyperparameters selections and interpretability [51]. The 
algorithmic bias can be introduced during pre-processing, in-processing and post-
processing stages of model design and development. The ignorance of sensitive 
features during feature extraction and selection strategy also leads to algorithmic 
bias at the pre-processing stage. Also, improper data cleaning and data exploration 
introduced human bias in the system. During the in-processing step, the black box 
design of DL architecture with hidden neurons may not be able to interpret the model 
predictions. The classifier design also influences the model accuracy for diagnosis 
decision for unbiased and fair outcomes at this step. Bias accountability due to 
exploitation of less efficient evaluation metrics leads to bias at post-processing step. 
Insufficient evaluation metrics are utilized for computing the performance of the AI 
predicting models may leads to its failure after clinical deployment. 

There are many strategies suggested to mitigate the impact of AI-bias in predic-
tion models. Strong documentation and auditing of the model design and architec-
ture should be performed to assess the model quality in terms of generalizability and 
interoperability [52]. Bias assessment tools such as Aequitas, PROBAST and many 
more must be utilized to compute the bias accountability in the predicted outcomes. 
Apart from these tools, predicted model quality must be validated by reviewing its 
technical, clinical and regulatory assessment. Technical validation comprises of eval-
uating the model quality in terms of its statistical analysis under practical guidance. 
Clinical validation involves gathering sufficient clinical evidence to ensure the model 
implementation, design and outcomes follows the designed guidelines. Regulatory 
assessment performs systematic validation with respect to available guidelines and 
regulations mandatory for automatic functioning of the model in realistic scenarios.
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1.4 Security and Privacy Concerns in Modern Healthcare 

The utilization of clinical data in modern healthcare must be checked before its 
usage for concerns such as ethical, legal, security and privacy in terms of patient, 
clinical staff and hospital. Ethical concerns in modern healthcare are related to sharing 
patient’s personal details with third parties for analysis without their consent. Ethical 
issues must be avoided by taking prior consent from the patient [53]. On the other 
hand, legal issues can be reported when medical data is used across different coun-
tries. Data gathered from one country can be analyzed or processed in a different 
country. There are country specific laws which govern the data collection and usage 
which must be checked to prevent security and privacy issues [54]. In order to ensure 
the generalizability and interoperability of the AI-based healthcare prediction model, 
it is essential to train the model on diverse datasets obtained from different countries. 
This model trained on diverse datasets has less impact of AI-bias in their outcomes. 
Hence, it is important to determine the solutions to such usage and modification of 
dataset cross-countries by avoiding pertaining legal issues [55]. 

In order to ensure data privacy in healthcare, many rules and regulations are formu-
lated to prevent misuse of patient’s data [55]. General data protection regulation 
(GDPR), and HIPAA are formulated to protect patients’ sensitive health informa-
tion as well as its ethical public usage. These regulations make it mandatory for the 
written disclosure statement from the patient before sharing their personal informa-
tion for further analysis. Apart from these regulations, there are AI-based techniques 
which also ensure to protect the data from unauthorized access. Federated learning, 
blockchain, and cryptographic techniques are a few techniques which ensure data 
security in medical domain. 

Since a lot of medical data is generated by various medical imaging techniques 
such as CT, MRI, and USd, the privacy concern regarding big data usage has arisen 
[56]. The commercial use of this big data in AI-based prediction model has increased 
the risk of security and privacy breaches. Also, cloud-based E-health systems involve 
online transfer of critical data digitally such as patient’s medical records, radiolog-
ical reports, billing data, and medical history. High level security schemes must be 
deployed in cloud to protect them from stealing and its inappropriate usage. Cloud 
based E-health systems are faster, efficient, robust and effective with minimal human 
intervention. However, to ensure the trust of user high level security system must 
be deployed for managing the patient’s privacy. Two level security authentication, 
OTP (One time password) based authentication, attribute based encryption, identity 
based encryption and many others encryption and authentication techniques were 
recommended to protect patient’s sensitive information from unauthorized access 
during online data transfer [57]. 

Generative AI based models such as ChatGPT have offered a wide range of 
facilities with improved decision-making. To ensure the real-time applicability and 
acceptability of these facilities, it is essential to address the concerns related to 
the patient’s data confidentiality, availability and privacy [58]. Privacy preserving 
techniques must be deployed to prevent data poisoning during training and phases.
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Sufficient measures must be taken to design models resistant to adversarial attacks. 
Advanced techniques such as blockchain, and fuzz testing not only to ensure high 
level data security but also to prevent erroneous and biased medical outcomes. 

1.5 Summary 

In this chapter, we have summarized the types, features, benefits and limitations 
of AI-based models either as ML-based approaches or DL-based approaches. The 
evolution of traditional healthcare to modern healthcare is highlighted to demonstrate 
the advantages of modern healthcare in today’s healthcare. Modern healthcare has 
transformed the conventional healthcare infrastructure with the help of the latest 
technologies. It has evolved not only to make patient’s self-reliance but also to extend 
personalized care and treatment to the patients. 

The benefits of AI-based prediction models for predicting chronic diseases such 
as brain tumor, cancer and CVD at an early stage have been discussed. These models 
are superior in accuracy and efficiency which process the medical imaging quickly. 
These techniques have reduced the manual intervention of radiologists and process 
the numerous imaging data in a faster way to provide accurate medical outcomes. 
Generative AI models-based healthcare models are also efficient in providing a voice-
based system for understanding the patient’s EHR quickly. These systems can process 
the patient’s multiple medical records to provide a clear understanding of the patient’s 
medical history for the clinical staff. 

Since modern e-healthcare systems involve online data collection and transfer, 
the security and privacy of patient’s critical information is foremost concerns. The 
various recent technologies have been highlighted to provide high-level privacy and 
security to patient’s data. These encryption techniques ensure trust, fairness and 
transparency to the medical outcomes suitable for their realistic deployment. 
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Chapter 2 
Research Orientation for AI Techniques 
in Modern Healthcare System 

Abstract Advancement in medical science and health care technology has won 
increased expected lifetime for people in the twenty-first century. To meet the expec-
tation of health care quality from the public, artificial intelligence (AI) techniques 
such as rule-based expert systems, fuzzy expert systems, artificial neural networks, 
genetic algorithms, and hybrid intelligent systems are widely used in medical science 
and health care services. The main objective is to promote AI applications research 
to address both theoretical and practical aspects of intelligent medical information, 
knowledge, and their management. These objectives have to be addressed by closely 
examining the synergy and the complementary nature of both theoretical and practical 
solutions of knowledge management and system development of health care intelli-
gent systems. Consequently, current fundamental research results have to be further 
developed before offering operational procedures for practical robust AI applica-
tions in the work process for decision making and knowledge management in the 
framework of health care level. The medical field has made great strides in medical 
image processing thanks to recent advancements in deep neural networks (DNNs) 
and other AI technologies that have found widespread usage in healthcare. A lot 
of current research is focused on developing automated systems that can evaluate 
photos and detect acute ailments, including brain tumors, breast cancer, bone frac-
tures, and a host of others. This would greatly benefit medical practitioners. This 
extensive study summarizes the most current developments in medical imaging that 
have made use of DNNs. Along with the extensive literature evaluation, there is an 
overview of publicly available data sources and ideas for future study. 

Keywords Artificial intelligence (AI) ·Machine learning (ML) · Deep learning 
(DL) ·Modern healthcare · Smart healthcare · AI in medicine · AI-based 
diagnosis ·Medical imaging · Clinical decision support systems
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2.1 Introduction 

In recent years, there have been significant advancements in the field of artificial intel-
ligence (AI). Machine learning (ML) is a subfield of AI that has achieved practical use 
in real-world scenarios [1, 2]. Here, some significant advancements revolve around 
neural networks (NN). The evolution of artificial neural networks (ANNs) may be 
described as progressing in a sinusoidal manner. Following an initial fascination in the 
late 1950s and early 1960s, there was a period of inactivity until 1986, when James 
McClelland and David Rumelhart released their renowned book. This rekindled 
enthusiasm for neural network research. Nevertheless, toward the end of the twen-
tieth century, the enthusiasm for neural networks waned again. A contributing factor 
to the lack of progress was the insufficiency of computer hardware with the capacity 
to process the extensive data required to implement neural network models [3] effec-
tively. Only over the past decade has there been a resurgence of interest in neural 
networks, leading to the creation of effective applications that can tackle real-world 
challenges. Several neural network topologies have garnered significant attention in 
the field of DNNs. These techniques have been applied in several fields, including 
medical picture classification, electromyography recognition, illness recognition and 
segmentation. Nevertheless, our focus in this study is to present a comprehensive 
analysis of the application of DNNs in the field of medical imaging. 

DNNs have greatly enhanced the process of diagnosing, arranging therapy, and 
providing care to patients by completely transforming several aspects of medical 
image processing. Their ability to identify significant features and patterns from 
medical images utilizing large-scale datasets has shown to be highly successful, 
leading to more accurate and efficient analysis [4]. DNNs demonstrate exceptional 
efficacy in tasks like as image classification and segmentation, which are crucial 
in the field of medical imaging. DNNs have the ability to acquire the knowledge 
of identifying and classifying various anatomical characteristics, abnormalities, or 
lesions in medical images through extensive training on large datasets that have been 
labeled and annotated. In addition, they have the ability to accurately partition organs 
or other regions of interest, enabling precise measurements and quantitative anal-
ysis. DNNs have been extensively integrated into computer-aided diagnostic (CAD) 
systems [5]. By using large amounts of labeled data, these networks may learn to 
detect subtle patterns or abnormalities in medical pictures that may be challenging 
for human observers to see. DNN-based computer-aided diagnosis (CAD) systems 
provide radiologists and clinicians with more information and improve the accuracy 
of diagnoses. Deep learning (DL) algorithms have proven to be highly successful in 
the application of picture repair and enhancement tasks within the medical industry 
[6]. For example, DNNs have the ability to generate high-quality images from defec-
tive or noisy data in computed tomography (CT) and magnetic resonance imaging 
(MRI). This process reduces artifacts and improves the overall picture quality [7]. 

The key contributions of this chapter are as follows:
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• We have categorized the pattern recognition task, image modality and abdominal 
region by using deep-learning-based medical imaging. The salient features of each 
category are highlighted and elaborated to determine its benefits and limitations.

• We have highlighted the salient features of high-risk surgery and modern medical 
equipment assisted by AI. We have also mentioned the benefits and challenges.

• A summary of the paradigm shift from traditional to smart healthcare, AI biased 
medical systems and analysis 

These advancements lead to faster scans, reduced radiation doses, and improved 
visibility of anatomical structures. DNNs have been utilized to achieve precise and 
resilient image registration, a process that includes matching numerous medical 
pictures obtained from various modalities or time points. Through the acquisition of 
spatial changes, DNNs are able to automatically align pictures and enable compar-
isons, such as monitoring the advancement of diseases or strategizing solutions. 
Disease detection and prediction: DNNs have demonstrated potential in automating 
the identification and prediction of diseases through the analysis of medical imagery. 
Through the utilization of extensive datasets, these networks are capable of discerning 
precise imaging biomarkers that are linked to various illnesses [8]. For instance, in the 
field of cancer imaging, DNNs have the capability to detect tumor properties, forecast 
tumor malignancy, and evaluate the effectiveness of treatment by analyzing radio-
logical pictures. DNNs have the capability to produce synthetic medical pictures, 
which may be used to enhance data augmentation, expand the training set, and create 
authentic simulations for training and testing. The amalgamation of photos is espe-
cially advantageous in scenarios with a scarcity of labeled data or uncommon circum-
stances, whereby DNNs can provide a wide range of instances to augment the effi-
cacy of models. The DL models can utilize medical imaging along with other clinical 
data, such as genetics or electronic health records, to facilitate the practice of tailored 
care. DNNs can aid in treatment planning, prognostication, and therapy selection by 
incorporating patient-specific data and analyzing image-derived characteristics and 
patterns [8]. 

The rest of the chapter is organized as follows. Section 2.2 analyzed the recent 
deep-learning applications using medical imaging like classification, segmentation, 
registration and detection for different diseases. In addition, AI assisting high risk 
surgery and AI and modern medical equipment, from traditional to smart healthcare 
of paradigm shift, AI-bias in medical system are highlighted in Sect. 2.3. In Sect. 2.4, 
Quality of Services for AI based Healthcare system is discussed. Applications of AI-
based Healthcare system are mentioned in Sect. 2.5. Lastly, the concluding remarks 
and future directions, i.e., summary is sketched in Sect. 2.6 (Fig. 2.1).
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Fig. 2.1 Classifications and methods for disease detection using medical imaging 

2.2 Classification of Diseases 

The integration of machine learning (ML) and DL in the healthcare sector is a recent 
development that has not yet been thoroughly explored [7]. The medical healthcare 
business is a promising area of study, as current research trends indicate [9, 10]. In 
the following sections, we will explore some of the most significant recent literature 
on the methodologies, contributions, and applications of machine learning and DL in 
several disciplines within this industry. Table 2.1 presents a comprehensive analysis 
of different diseases that cover the use of DL and ML technologies in conjunction with 
smart healthcare integration. The methods and contributions of each organization 
depicted in this table have been thoroughly examined.

2.2.1 Mental Illness 

People’s susceptibility to mental diseases is heightened by sudden shifts in living 
standards, economic volatility, and excessive utilization of social media platforms. 
Mental diseases result in elevated levels of stress, which in turn give rise to signifi-
cant neurological troubles in individuals, including depression, suicidal inclinations, 
and various mental issues [11, 12]. AI has facilitated the prediction, monitoring, and 
planning of mental health disorders in the population with its sophisticated capabil-
ities. AI has developed prediction models capable of analyzing health information, 
brain imaging, and clinical notes to accurately detect mental diseases [13]. AI is 
widely used to analyze social media sites like Twitter and Facebook to diagnose 
depression in users. This is done by extracting crucial information from the tweets 
and comments they publish. This chapter has covered the prominent characteristics 
and restrictions of several AI-driven prediction models that are helpful in identifying 
mental disease problems at an early stage [14, 15].
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2.2.2 Brain Tumor 

Medical imaging, or radiology, is the branch of medicine where healthcare experts 
produce pictures of different bodily areas for the goal of diagnosis or therapy. Medical 
imaging treatments encompass non-invasive diagnostic tests that enable physicians to 
identify injuries and diseases without causing intrusion or discomfort (TechTarget, 
n.d.). Several tools and strategies are employed to automate the interpretation of 
medical pictures obtained through different image-processing technologies [16]. The 
brain is a very intricate and sizable organ within the human body. Detecting anoma-
lies from brain pictures, such as MRI, CT, PET scans, etc., is a significant field of 
study in medical image analysis. Brain image analysis utilizes a range of image 
processing techniques, including filtering, thresholding, geometry models, graph 
models, region-based analysis, connected component analysis, machine learning 
(ML) models, DL models, and hybrid models [17]. Brain tumors are a prevalent 
kind of brain illness that has a significant mortality rate. Analyzing brain pictures 
to identify tumors is challenging due to the diverse nature of their shape, location, 
size, texture, and other features [18]. This paper provides a thorough examination of 
brain tumor image analysis, covering the fundamental concepts of brain tumors, brain 
imaging, tasks involved in brain image analysis, models used for brain image analysis, 
features of brain tumor images, performance metrics for evaluating the models, and 
available datasets for brain tumor and medical images. The text discusses several 
issues associated with brain tumor analysis, as well as providing ideas for future 
research approaches [19]. 

2.2.3 Diabetic Retinopathy Using Retinal Imaging 

Diabetic retinopathy (DR) is a serious eye disorder and a leading cause of perma-
nent blindness globally. The condition is a result of injury to the blood vessels in 
the retina. The symptoms of Diabetic Retinopathy (DR) include the presence of 
black strings or spots that appear to float in the individual’s field of vision, the 
occurrence of empty regions within their visual field, a decline in their ability to 
perceive colors accurately, and the experience of hazy and inconsistent vision [20]. 
In severe instances, the individual experiences permanent visual impairment. Histori-
cally, the process of DR screening involved manually examining fundus photographs. 
Nevertheless, this procedure, apart from being laborious, also requires meticulous-
ness during large-scale screening to prevent any diagnostic errors. These constraints 
can be surmounted by an automated computer-aided diagnostic system (CAD) for 
DR. A DR-CAD system refers to the automated analysis of fundus pictures for the 
purpose of classifying diabetic retinopathy and identifying related retinal diseases. 
A DR-CAD system can aid medical professionals in accurately interpreting medical 
pictures [21]. Furthermore, it can also aid in the identification and highlighting of 
prominent structures in the retina, which can then be utilized for more accurate
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examination of their severity. This chapter showcases a carefully chosen assortment 
of machine learning and DL models that are used for detecting diabetic retinopathy. 
The study encompasses models for binary and multistage diabetic retinopathy (DR) 
categorization, as well as the identification and delineation of four primary lesions— 
namely, microaneurysms, hemorrhages, cotton wool spots, and hard exudates. DR-
CAD systems enable the automated identification of DR in its first phase, facilitating 
the management of the gradual deterioration of the retina [22]. 

2.2.4 CVD (Cardio Vascular Diseases) Risk 

Cardiovascular diseases (CVD) are the primary cause of mortality worldwide and 
are seeing a concerning upward trend, as reported by the American Heart Associa-
tion’s Heart Attack and Stroke Statistics 2021. This surge has been intensified due 
to the ongoing coronavirus (COVID-19) epidemic, consequently augmenting the 
strain on existing healthcare services. Smart and Connected Health (SCH) offers a 
practical and effective answer for the current healthcare difficulties [23]. It has the 
ability to transform the direction of healthcare to become more strategic, preventative, 
and tailored, hence enhancing its effectiveness with additional services that provide 
value. This research aims to categorize the most advanced SCH (Smart City Hub) 
technologies through a detailed examination of existing literature and analysis. The 
goal is to provide a comprehensive definition of SCH characteristics and highlight the 
technological difficulties that need to be addressed for widespread adoption of SCH. 
Additionally, we present an architectural model that encompasses the technology 
element of the SCH solution, its context, and the key players involved [24]. It func-
tions as a benchmark for the adoption and implementation of SCH. We analyzed a 
case study on COVID-19, which demonstrated how several nations have approached 
the pandemic by utilizing diverse technologies in the field of public health, such as 
big data, cloud computing, Internet of Things, AI, robots, blockchain, and mobile 
apps. SCH has been effectively utilized at several phases, including illness diag-
nosis, viral identification, individual monitoring, tracking, managing, and resource 
allocation, in the fight against the pandemic. Moreover, this analysis emphasizes 
the obstacles to the acceptability of SCH (Smart Connected Health) and suggests 
prospective research avenues to improve patient-centric healthcare [25, 26]. 

2.2.5 Breast Cancer Prediction 

Since 2020, breast cancer has attained the highest global incidence rate among all 
types of malignancies. Early detection and intervention by breast imaging greatly 
contribute to improving the prognosis of breast cancer patients. Over the last ten years, 
DL has made significant advancements in the analysis of breast cancer imaging.
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It has the potential to effectively comprehend the abundant information and intri-
cate context of several breast imaging techniques. Given the fast advancements in 
DL technology and the growing severity of breast cancer, it is crucial to evaluate 
previous achievements and pinpoint potential obstacles that need to be tackled [25]. 
This work presents a comprehensive analysis of breast cancer imaging research that 
utilizes DL techniques. It encompasses studies conducted in the previous 10 years, 
focusing on mammograms, ultrasound, MRI, and digital pathology pictures. This 
text elaborates and discusses the main techniques and uses of DL in imaging-based 
screening, diagnosis, treatment response prediction, and prognosis. Based on the 
results of this survey, we provide a thorough analysis of the difficulties and possible 
directions for further investigation in DL-based breast cancer imaging [23, 24]. 

2.2.6 Detection of Diabetic Foot Ulcer 

Diabetes is a persistent medical disorder resulting from unregulated amounts of 
glucose in the human body. Early detection of this condition can help prevent serious 
consequences, such as the development of diabetic foot ulcers (DFUs). A Diabetic 
Foot Ulcer (DFU) is a severe medical ailment that has the potential to result in the 
surgical removal of a diabetic patient’s lower extremity. The diagnosis of DFU poses 
significant challenges for medical professionals due to its complex nature, frequently 
requiring many expensive and time-consuming clinical tests. In the era of exces-
sive data, the utilization of advanced techniques such as DL, machine learning, and 
computer vision has offered several ways to aid physicians in reaching more accurate 
and expedient diagnostic judgments [27]. Consequently, the scientific community has 
recently shown increased interest in automatically identifying DFU. The attributes 
of the wound and the way they are perceived visually in the context of computer 
vision and DL, namely convolutional neural network (CNN) methods, have shown 
promising options for diagnosing diabetic foot ulcers (DFU). These methodologies 
possess the capacity to be really beneficial in contemporary medical procedures. 
Hence, it was necessary to conduct a thorough and extensive examination of these 
current methods [28]. The publication sought to furnish scholars with an elabo-
rate account of the present state of automated DFU detection tasks. Existing works 
have shown that the utilization of both classic machine learning (ML) and sophisti-
cated DL approaches is essential in assisting doctors to produce quicker and more 
dependable diagnostic conclusions. Image features in standard machine learning 
(ML) methods play a crucial role in providing meaningful information regarding 
diabetic foot ulcer (DFU) wounds, aiding in their correct diagnosis. Nevertheless, 
sophisticated DL methods have demonstrated more potential compared to machine 
learning (ML) approaches. The issue domain has been predominantly dominated by 
CNN-based solutions put forth by several authors [29]. A diligent researcher will 
effectively discern the main concept in the DFU identification task, and this article 
will assist them in solidifying their future study objective [30].
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2.2.7 AI in Immunology 

The human immune system has a high level of intricacy. Traditionally, compre-
hending it necessitated specific knowledge and experience acquired through years 
of study. Recently, the implementation of technology like AIoMT (Artificial Intel-
ligence of Medical Things), genetic intelligence algorithms, and smart immunolog-
ical techniques has simplified this procedure. These technologies have the ability to 
observe and identify relationships and patterns that are also perceivable by people, 
as well as patterns that are not detectable by humans [31]. Moreover, these tech-
nologies have also facilitated our comprehension of the many cellular components 
inside the immune system, including their compositions, significance, and influence 
on human immune response, particularly in devastating conditions like cancer. This 
paper examines the current AI approaches used in the field of immunology. This 
study begins by elucidating the incorporation of AI in the healthcare sector and its 
transformative impact on the medical field. Additionally, it provides an overview of 
the present uses of AI in various healthcare sectors, as well as the primary obstacles 
encountered when attempting to incorporate AI into healthcare. It also highlights the 
recent advancements and contributions made by other researchers in this subject [32]. 
The primary objective of this study is to investigate the prevailing categorizations 
of health ailments, immunology, and its principal subfields. The latter portion of the 
paper provides a statistical analysis of the advancements made in AI within various 
areas of immunology. It also includes a comprehensive examination of the machine 
learning and DL techniques and algorithms that have been utilized in the field of 
immunology. In addition, we have examined a compilation of machine learning and 
DL datasets pertaining to several subdomains within the field of immunology. Ulti-
mately, the paper concludes by examining the potential avenues for future research 
in the subject of AI in immunology and offering potential remedies for the identified 
issues [33]. 

2.3 AI Tools for Automated Medical Systems 

The use of IoMT (Internet of Medical Things) and its associated technologies 
has successfully addressed several challenges in the fields of remote monitoring, 
telemedicine, robotics, and sensors. Nevertheless, achieving widespread acceptance 
presents difficulties stemming from considerations like as data privacy and secu-
rity, the handling of vast quantities of data, scalability, and the need for upgrades 
[34, 35]. This organized systematic review will enhance the efficiency of healthcare 
practitioners, policymakers/decision-makers, scientists, and researchers in assessing 
the application of IoMT in healthcare, despite the already existing abundance of 
knowledge and information sharing.
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2.3.1 Modern Medical Equipment 

The abrupt outbreak of the Coronavirus illness (COVID-19) has placed the whole 
healthcare system in a state of heightened vigilance. The Internet of Medical 
Things (IoMT) has significantly alleviated the situation. Additionally, the COVID-
19 pandemic has spurred scientists to develop a new “Smart” healthcare system that 
prioritizes early diagnosis, prevention of transmission, education, treatment, and 
adaptation to the new normal. This review seeks to determine the role of Internet 
of Medical Things (IoMT) applications in enhancing the healthcare system. It also 
aims to assess the current state of research that demonstrates the effectiveness of 
IoMT benefits for patients and the healthcare system. Additionally, it provides a brief 
overview of the technologies that support IoMT and the challenges encountered in 
developing a smart healthcare system [36]. 

Biomedical research progress produces a wide range of healthcare-related data, 
such as medical records and information on the maintenance of medical devices. 
The COVID-19 pandemic has a substantial impact on the worldwide death rate, 
leading to a tremendous need for medical technologies. With the advancement of 
information technology, the idea of intelligent healthcare has increasingly become 
more important [37, 38]. Smart healthcare employs advanced information technolo-
gies, including the Internet of Things (IoT), big data, cloud computing, and AI, to 
revolutionize the conventional medical system [39]. A predictive model is presented 
to forecast medical equipment failure in order to intelligently manage healthcare 
services and introduce the notion of smart healthcare. The Internet of Things (IoT) 
has had a significant influence on the progress of the healthcare business. The advent 
of Medicine 4.0 has led to a greater focus on the development of platforms, encom-
passing both hardware and software components. This concept has resulted in the 
creation of Healthcare Internet of Things (H-IoT) solutions [40]. The fundamental 
technologies that facilitate the functioning of a system include the communication 
networks that facilitate the exchange of information between the sensing nodes and 
the processors, as well as the processing algorithms that are responsible for creating 
an output based on the data acquired by the sensors [41]. Currently, these facilitating 
technologies are also backed by several emerging technologies. AI has revolution-
ized the H-IoT systems across several levels. The fog/edge concept involves putting 
processing capacity in close proximity to the deployed network, therefore addressing 
several issues in the process. Big data enables the management of vast quantities of 
data. In addition, Software Defined Networks (SDNs) provide system flexibility, 
while blockchains are being utilized for innovative purposes in H-IoT systems. 

2.3.2 AI-Assisted High-Risk Surgery 

Global surgery encompasses a fast-growing interdisciplinary subject that focuses on 
improving and ensuring fair access to surgical care in worldwide healthcare systems.
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Global surgical programs typically prioritize enhancing capacity, advocating for, 
educating, researching, and developing policies in low- and middle-income coun-
tries (LMICs) [42]. The current lack of sufficient surgical, anesthetic, and obstetric 
treatment is responsible for causing 18 million fatalities annually that might have been 
prevented. Consequently, there is an increasing fascination in the fast expansion of AI 
which presents a unique chance to improve surgical services in LMICs. AI modal-
ities have been utilized to customize surgical education, automate administrative 
procedures, and create practical and cost-efficient simulation training programs that 
cater to individuals with specific requirements [43]. In addition, AI may contribute 
to offering valuable information for governance, infrastructure development, and 
the monitoring and prediction of stock take or logistics failure, which can enhance 
the foundations of global surgery. AI-powered telemedicine platforms have enabled 
healthcare providers to remotely assist in intricate procedures, potentially enhancing 
surgical accessibility in LMICs. One of the challenges in integrating AI technology 
is the misrepresentation of minority groups in the datasets, which might result in 
discriminatory bias. Further research is needed to better understand human reluc-
tance, employment insecurity, automation bias, and the impact of confounding factors 
in order to ensure fair and effective use of AI. By employing a concentrated and 
empirically-supported strategy, AI has the potential to assist several LMICs in over-
coming administrative inefficiencies and enhancing the effectiveness of their surgical 
systems [44]. 

2.3.3 Traditional to Smart Healthcare 

An overview of the fundamental aspects, such as the evolution of healthcare systems 
from traditional to smart and innovative healthcare, is important. Awareness of the 
obstacles posed by several healthcare paradigms to sophisticated health solutions 
helps to overcome them. Healthcare paradigms have experienced continual advance-
ments, intertwined with sophistication added to each [42]. Proper judgment or assess-
ment and service of modern healthcare composite solutions are indeed essential to 
entail the most efficient strategies to tackle health issues. It is important to under-
stand the deluge of health problems people are likely to face in the coming years 
and the healthcare needs that will cater to people’s health. Smart healthcare, driven 
by the latest technological advancements, is also increasing in demand. Technolog-
ical revolution in recent years has changed the way healthcare has been traditionally 
viewed. Traditional healthcare generally refers to the medical care conducted by 
general practitioners, nurses, and others along similar lines [45]. Smart healthcare 
mainly leverages the use of advanced technology to help simplify diagnosis and bring 
services closer to patients. Even though there is an increase in smart and innovative 
healthcare, some traditional setups are also being used. The only problem with these 
traditional healthcare systems is that they are unable to cope with the rapid increase 
in sickness brought on by novel bacteria and focus on trying to bring medicine to the 
people instead of the people to medicine [46].
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2.4 Short Notes on QoS in Smart Healthcare 

An essential demand in the field of medical healthcare is the effective calculation 
of quality of service (QoS) during the processing of medical data, achieved via the 
use of intelligent measurement methods. Emergency medical services frequently 
need the transfer of vital data, which means that they have strict demands for 
network quality of service (QoS). This study makes three different contributions [34]. 
The proposed system, called Adaptive QoS Computation system (AQCA), aims to 
monitor performance indicators such as transmission power, duty cycle, and route 
selection during medical data processing in healthcare applications. The technique is 
designed to ensure fairness and efficiency in this monitoring process. Furthermore, 
a QoS computing framework for medical applications is provided, including the 
physical, medium access control (MAC), and network levels. Furthermore, a QoS 
computation method is constructed using the suggested AQCA, together with the 
consideration of quality of experience (QoE). In addition, the assessment of QoS 
computation for medical healthcare applications is conducted using user terminal 
(UT) devices with big screens ranging from 4 to 10 inches, such as LCD panels with 
certain sizes and resolutions. These devices prioritize good visualization, long battery 
life, and power optimization for ECG service in emergency situations [39]. These UT 
gadgets are utilized to attain the utmost level of pleasure in terms of reduced power 
consumption, prolonged battery life, and best route selection. The analysis focuses 
on determining the extent to which each QoS parameter influences the processing 
of medical data, taking into account the calculation of QoE perception. The experi-
mental findings suggest that Quality of Service (QoS) is determined at the physical, 
MAC, and network levels using specific parameters such as transmission power (-15 
dBm), latency (100 ms), jitter (40 ms), throughput (200 Bytes), duty cycle (10%), and 
route selection (optimal). Therefore, it can be concluded that the suggested AQCA 
is a more suitable option for QoS computation in medical healthcare applications 
compared to the Baseline [47]. 

2.5 Artificial Intelligence for Healthcare: Applications 

Artificial intelligence (AI) technologies have, for several years, slowly but assuredly 
been penetrating several facets of our lives ranging from industries to entertainment. 
Similarly, the healthcare sector is not exempt from this advancement. In recent years, 
healthcare providers have started to adopt AI technologies to enhance the efficiency 
and outcomes of the services being provided. By looking at the current trajectory 
of AI deployment across healthcare systems, this transformation seems to continue 
at a higher pace in the forthcoming years. Likewise, the adoption of artificial intel-
ligence in healthcare is being motivated by several key drivers, including improved 
patient care, enhanced operational efficiencies, and the reduced burden on healthcare 
professionals. Consequently, the subsequent sections seek to elucidate the discussion
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Fig. 2.2 Dominant variables for AI in healthcare 

around the utilization of AI approaches in healthcare. The shown elements may be 
observed in Fig. 2.2. 

2.5.1 Health Services Management 

Artificial Intelligence (AI) is rapidly reshaping the management of health services 
within hospitals and healthcare facilities. Health services management encompasses 
the planning, organizing, coordination, and evaluation of health services to ensure 
efficient delivery of care. For many years, AI technologies have been implemented to 
streamline the management of health services, particularly administrative processes 
and tasks that consume substantial manual effort, and are error-prone due to human 
involvement. As a result, a variety of AI-driven solutions have emerged to automate 
administrative tasks, allowing healthcare professionals to devote their time to prior-
ities that directly concern patient welfare. The implementation of AI technologies 
in health services management thus brings a dual benefit: operational improvement 
and enhanced patient care. AI applications enable hospitals and healthcare services 
to operate more efficiently due to the following reasons:

• Clinicians can instantly access data as and when required.
• Nurses can enhance patient safety while administering medication.
• Patients can remain informed and actively participate in their healthcare by 

communicating with their medical teams during hospital stays. 

In addition, in healthcare, a large proportion of everyday tasks consists of routine 
actions that do not require extensive experience or deep knowledge. Rather, these 
tasks often involve simple choices based on easily identifiable grounds, such as 
checking a set of data against known parameters and taking a standardized action if 
they fall outside the accepted range. Other common routine tasks include scheduling 
actions based on temporal relationships, transferring data from one place to another, 
adding entries to records, and looking up data based on specific tags. AI technolo-
gies can automate many such tasks. For example, scheduling is a very widespread 
everyday task that can be quite complicated when multiple parameters must be
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considered in each decision. Small changes in a complex schedule can result in 
large cascades of necessary adjustments, along with added considerations related to 
health and personal needs or interactions between patients and staff. Basic scheduling 
often requires human experience and discretion because it involves predicting prior-
ities and the effects of unforeseen events. However, with readily available data such 
as fixed rules, schedules, time logs, and records of past decisions and interactions, 
these processes can be modeled mathematically. 

2.5.2 Predictive Medicine 

Predictive medicine is a recently blossomed field seeking to boost patients’ life 
quality and longevity through tailored preemptive actions instead of conventional 
therapies that move reactively post disease emergence. Artificial Intelligence (AI) 
enhances patients’ results by predicting upcoming health issues and recommending 
intervention suggestions. These models can be used to refine the classic preven-
tive healthcare strategy of periodic risk screenings into a more efficient On-Demand 
screening strategy, prompting the analysis of selected individuals flagged as risky by 
the model. Numerous successful predictive medicine implementations exist across 
specialties, illustrating the wide applicability of AI predictive algorithms. A notable 
achievement of predictive medicine is in Early Diagnosis systems, where models 
predict future health events and suggest timely intervention. The key to predictive 
medicine efficacy is the quantification of data-driven insights from retrospective data 
in the form of numerical indices that capture relevant public health aspects. Early-
stage interventions are vital for systems regarding disease proliferation and irre-
versible damaging effects. Recently emerged healthcare systems focused on patients’ 
pivotal feature: proactivity in disease management. Ailing prevention is based on peri-
odic screening of the entire population, potentially overlooking many endangered 
individuals. Instead, proactive healthcare strategies aim to boost currently applied 
predictive screening techniques. 

2.5.3 Clinical Decision-Making 

Healthcare organizations are under constant pressure to enhance clinical decision-
making processes and improve patient outcomes. Artificial intelligence (AI) tech-
nologies can assist healthcare professionals in making better-informed decisions. 
Clinical decision support systems based on AI algorithms can analyze patient data 
and suggest the most effective treatment options. The suggestions made by the deci-
sion support systems are typically in the form of evidence-based recommendations 
that take the form of a ranked list of possible interventions. Several studies explore 
the emerging use of AI systems in enhancing decision-making capabilities in clinical 
contexts where efficiency plays a critical role, such as disease diagnostic processes
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and epidemiological surveillance. Integrating AI within electronic health records 
(EHRs) could augment clinicians’ capabilities, enabling them to spend less time 
collecting and analyzing data and more time providing care. However, concerns exist 
regarding the interpretability of AI recommendations. Resolution of these concerns 
will require research into the balance of power within collaborative decision-making 
between healthcare providers and AI systems. Responsibility for the correctness of 
a decision made with the involvement of an AI system should lie with the healthcare 
provider who interprets the system’s output, thus reinforcing their decision-making 
role. 

2.5.4 Patient Data and Diagnostics 

Health worldwide has recently been significantly affected by Covid-19. Artificial 
Intelligence (AI) could improve patient care quality and hospital performance, 
making it highly attractive for healthcare recovery. An essential part of the clin-
ical environment is patient data, which healthcare organizations collect, maintain, 
and utilize daily during clinical operations. Clinical records include every patient-
related activity in the hospital or healthcare organization, right from admission to 
discharge. Healthcare facilities maintain diverse clinical records of patients such 
as demographic attributes, medical history, progress notes, vitals, lab reports, treat-
ments, medications, medical images, and outcomes. These clinical records are bene-
ficial for creating patients’ profiles and performing diagnoses. With the rapid growth 
of digitization in healthcare, patient data management has become a major chal-
lenge, but at the same time, a key technology determinant for better diagnostics and 
improved healthcare outcomes. 

The patient information files in hospitals or healthcare organizations are a rich 
source of structured and unstructured data related to each patient’s clinical history. 
AI-operated systems can utilize this data to prepare a comprehensive profile for each 
patient and assist the physician in making better clinical decisions. Most hospitals 
maintain health information systems (HIS), which are either standalone or integrated 
systems to manage different clinical applications such as patient record management, 
pharmacy, lab, radiology, billing, and so on. These applications capture, store, and 
maintain a large amount of data related to patients, diseases, and clinical activities. 
The advent of huge clinical data repositories has the potential to improve the accuracy 
of disease diagnosis by revealing hidden patterns in the data, which is too complex for 
human analysis. Data mining techniques provide the means to discover knowledge 
from massive datasets and use such knowledge to automate decision-making. Predic-
tive analytics and machine learning models can enhance the diagnostic capability of 
the healthcare system by discovering data-driven insights from historical records of 
patients, diseases, and treatments. Unfortunately, most healthcare organizations still 
rely on traditional data handling techniques and expert knowledge for disease diag-
nostics, leading to inaccurate diagnoses in many cases. Along with this, improper 
data recording and a lack of interoperability between different health information
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systems restrict the application of data mining in healthcare. Creating a comprehen-
sive profile for each patient and mechanism implementation for protecting patient 
data privacy are important concerns for healthcare organizations planning to adopt 
artificial intelligence. 

2.6 Summary 

In medical imaging, there are several artificial intelligence (AI) models and tech-
niques available to perform the task of segmentation, which refers to demarcating 
target structures, organs, and areas in medical images. We summarize the AI models 
for this domain in this section. These models can be divided into two groups based on 
the approaches used to develop them: classical computer vision and deep learning. 
In addition, deep learning models can be further divided on the basis of their respec-
tive architectures. Convolutional neural networks (CNNs) are widely applied in the 
tasks of object segmentation, detection, classification, and are considered the state-
of-the-art architecture. We further summarize the AI models as follows:— Clas-
sical image processing-based models—Deep learning-based models—CNN-based 
models—Segmentation by integration of domain knowledge models—U-Net-based 
models—Attention-based models Each of these AI models has distinct advantages 
and disadvantages. Some are very powerful and can segment very specific struc-
tures like airway walls, lung nodules, lung lesions, and colon polyps, among others. 
Depending on the AI model selected and the nature of the dataset being explored, one 
or more of the following common processes need to be performed: pre-processing, 
model training, and model evaluation. In terms of AI model selection, knowledge 
about the dataset and the problem at hand is an essential factor that needs to be taken 
into account while developing an AI model. The performance of any developed AI 
model will essentially be a function of the dataset from which the model was trained. 
High-quality labeled image datasets are key to developing accurate and precise AI 
models. Therefore, it is almost impossible to develop domain-agnostic gold stan-
dard models. Domain knowledge should be involved while devising and training AI 
models that are to be deployed in a clinical or research setting. 
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Chapter 3 
Diagnosis and Prediction of Brain Tumor 
Using Artificial Intelligence 

Abstract Brain tumor is a disorder which occurs due to unconditional and uncon-
trolled growth of the brain cells. Sometimes, the growth of these cells is malignant and 
leads to brain cancer. AI with conventional and advanced algorithms analyze various 
imaging data such as CT scans and MRI scans of the brain to identify the growth of 
cancerous cells in brain at an early stage. Early diagnosis of brain tumor is helpful in 
extending the accurate treatment and preventing the mortality to a great extent. In this 
chapter, we have exhaustively analyzed and reviewed the various conventional and 
advanced techniques which can detect brain tumor cells at an early stage. Also, the 
performance of these algorithms is explored to identify the limitations and suggest 
future solutions. 

Keywords Brain tumor ·Machine learning (ML) · Deep learning (DL) · Transfer 
learning (TL) · Brain imaging · Generalizability 

3.1 Introduction 

Brain is a part of central nervous system which controls the movement and actions 
of other body organs [1, 2]. Brain is an incredible organ of the body which sends 
instructions to other organs for processing of the decision taken by them. Brain has a 
very complex structure and require specialized skills to understand its disorders and 
abnormalities [3, 4]. 

Artificial Intelligence (AI) has provided many applications in the field of tracking 
[5, 6], tourism [7], education [8, 9] and many more [10, 11]. In the field of medical 
image analysis, AI has provided many machine learning (ML) [12, 13] and deep 
learning (DL) [14, 15] algorithms for early diagnosis and prognosis of critical 
diseases. AI has provided many solutions to segment the tumorous cells from the 
healthy cells in the brain imaging. AI-based algorithms diagnose the severity of brain 
cancer and saves lives. 

Mainly, brain imaging data acquire using either CT (Computer tomography) [16] 
or MRI (Magnetic resonance imaging) [2, 17] scans to process them for determining
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brain abnormalities. Both of them are non-invasive techniques and quite popular 
among neurologists to perform initial stage of test for predicting the existence of 
brain tumor. Numerous algorithms have been proposed to process these imaging 
data for determining the type, stage and location of tumor in brain [4, 18]. The 
captured images are poor in contrast and resolution. Hence, proper preprocessing 
steps must be taken to improve contrast and suppress noise for accurate prediction 
[19]. After this, features are extracted, and feature selection is performed to determine 
the crucial and sensitive features. This step is essential for determining the better 
computational efficiency of the algorithm. Next, AI-based algorithms were exploited 
to provide discriminative information for segmenting the brain imaging for tumor 
cell classification. 

Earlier, brain imaging data can be analyzed manually. It includes examining the 
patient’s physical appearance, checking the medical and family history. However, 
manual prediction of cancerous cells in brain tumor is highly dependent on the 
expertise of the radiologists, medical practitioners and is time consuming too. In 
modern medical imaging analysis, conventional and advanced techniques are quite 
innovative, popular, fast, and accurate. These techniques utilized various features 
such as intensity, texture, gradient, Gabor and deep features for predicting various 
brain diseases [20–23]. Depending on the requirements, medical experts can utilize 
either of the techniques for prediction. 

In this chapter, various AI-based brain tumor prediction algorithms are discussed 
and reviewed. These algorithms can predict the various categories of brain tumor and 
analyze the severity so that proper treatment can be extended. The key contributions 
of the chapter are as follows:

• We have analyzed the brain anatomy to determine the various abnormalities by 
evaluating the various brain regions.

• The challenges of AI-based predictive algorithms for segmenting the brain 
imaging to predict the category of tumor are highlighted to provide suitable 
solutions to address each limitation.

• AI-based predictive algorithms for brain tumor segmentation are broadly reviewed 
into two categories as conventional approaches and advanced approaches. The 
potential work under each category is exhaustively examined to determine the 
accuracy and efficacy of each method for brain tumor prediction.

• The various categories of AI-based predictive algorithms are compared and elab-
orated. The salient features of each category are highlighted to determine the 
benefits and limitations for their applicability to clinical deployment. 

The details about the brain structure and its abnormalities are as follows. 

3.1.1 Brain Structure and Abnormalities 

The brain is a complex organ of the central nervous system which controls all the 
other body parts. It responds and takes decisions to instruct the various body parts
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to take necessary actions. The human brain has three main components namely, 
cerebrum, cerebellum and brain stem. There are two matters, namely, gray matters 
and white matters are present in brain which control its activity by forming neuronal 
and cells of brain. Figure 3.1 illustrates the structure of the brain along with its main 
components. 

Brain anatomy describes cerebrum as its largest part and known for controlling the 
major activities of the human that includes thinking, body parts movements, reactions, 
and feelings. It is divided into two hemispheres known as right and left parts. They 
contain four lobes namely, temporal, frontal, parietal, and occipital lobe. Each lobe 
is characterized for a set of functions taken by brain. Frontal lobe located in forward 
part of the brain and is responsible for reasoning, emotion and language. Behind 
the frontal lobe, parietal lobe exists and is responsible for sensation movements 
that include touch, pressure, taste, smell and pain. Occipital lobes are known for 
processing visuals in the brain. This lobe is crucial in memory management, face 
recognition, color identification and determining depth and distance. Temporal lobe 
is separated from frontal lobe by later fissure. It is involved in processing sensory 
and auditory information. It helps in recognizing voice, faces and creating memories 
[24]. 

As per brain anatomy, the second largest part is cerebellum. Cerebellum is located 
in head backside and interconnected with brain stems. Primarily, it is responsible 
for walking, posture, hand movements and other body activities. Another important 
component in brain anatomy is brain stem. It is present in the bottom part of the brain 
connected with the spinal cord. Brain stem controls many crucial body functions such 
as breathing, digestion, heart rate, cough, vomiting, sleep cycles, yawning and many 
more. Apart from this, cerebrospinal fluid also flows within, and around the brain. 
The glucose, white blood cells and body salts are formed in this fluid. It also prevents 
brain tissues from severe injury [24]. 

Quality of life is impacted by the life-threatening diseases that occur in various 
body parts. Brain is also a sensitive body organ which is prone to many abnormalities 
that may lead to patients’ death if not diagnosed and treated properly. Brain tumor

Fig. 3.1 Anatomy of 
healthy brain and its main 
components 
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is one of the serious life threating diseases that occur due to uncontrolled growth 
and mutation of normal cells in the brain. These cells absorb body blood to grow at 
a rapid rate. This increases the pressure, causes blockage and swelling in the brain 
nerves and impacts the other brain parts. This situation further leads to other severe 
neurological conditions such as dementia [25], stroke [26], and depression [27]. The 
severity of these diseases increases with time and causes another disease known as 
Alzheimer, in which patients lose memory, ability of learn, visual perception and 
ability of recognize people [28–30]. Hence, early diagnosis of brain abnormalities 
is crucial to provide effective treatment to the patient to prevent the condition from 
worsening. 

3.1.2 Description of Brain Tumor 

Brain tumor is a condition which causes abnormal growth of cells in the human brain. 
This unconditional growth of cells in brain causes abnormalities and may also lead 
to death of the person without proper and timely treatment. Brain tumors are broadly 
classified either as malignant or non-malignant. Malignant are cancerous tumors and 
require proper treatment and therapies to prevent their growth. On the other hand, 
non-malignant tumors are benign which are non-cancerous and do not impact the 
other parts of the body if left untreated. Hence, tumor concentrated in brain is not 
essentially cancerous. Its accurate diagnosis and prognosis are essential to determine 
it spread and type. 

To prevent criticality and spread to other organs, the early detection and prognosis 
of brain tumor is paramount. Benign tumors do not grow quickly and impact the other 
body parts. However, malignant tumors grow and spread quickly. Brain tumors are 
also categorized either as primary tumors or secondary tumors. The abnormalities 
of cells in the brain are known as primary tumors. On the other hand, metastatic 
brain cancer is known as a secondary tumor which originated in other body parts 
and then spread to the brains. Based on the growth, size, appearance and position, 
brain tumors are also graded in four categories [31]. Grade I: It is the initial stage of 
brain tumor which develops and grows slowly. Their timely diagnosis can cure them 
and prevent causalities. Grade II: This category of tumor can impact the neighboring 
tissues and can grow over time. The chances of recurrence of this stage of tumor are 
high and require time-to-time evaluation. Grade III: This stage of tumor spread faster 
to its surrounding tissues in comparison to grade II. Apart from surgical treatment, 
these tumors need chemo or radiotherapy treatment to prevent their growth. Grade 
IV: This category of tumors is most dangerous, faster growing and spreading quickly. 
These tumors absorb body blood to grow and spread aggressively.
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3.1.3 Challenges in Brain Tumor Detection 

Brain tumor detection in the brain imaging is challenging to the complex brain 
structure, and the limitations of adopted methodology for acquiring the training 
datasets. There are many reasons that needs to be addressed for effective and efficient 
brain tumor prediction and detection [32, 33]. The details are as follows: 

Location uncertainty: The distribution and mutation of glioma in the brain is from 
gluey cells which are widely spread in the brain. Gluey cells are kind of support 
to the nerves in the brain which can occur from low to high grade glioma. Due to 
widespread distribution of gluey cells, the precise localization of tumorous cells 
in brain is really challenging. 
Morphological ambiguity: Brain tumors vary in shape, size and structure. The 
morphological uncertainty occurs due to variations in shape and size in images. 
The outer layer of brain known as edema, is also different in different sub regions 
and locations. Hence, the variations in tumor shape and size make its detection 
and segmentation from the neighboring tissues tedious. 
Low contrast imaging: The captured brain images either from CT or MRI are 
of poor quality with low resolution and contrast. To design efficient methods for 
accurate segmentation of tumor from the surroundings, the imaging data needs 
to contain high quality diverse information. The blurry images make the tumor 
boundaries hard to be classified from the nearby regions. 
Noise in images: Apart from the low quality, brain imaging data contains noise 
which make the segmentation process hard and difficulty. It has been observed 
that during image projection and acquisition process, images contain the artifacts, 
and details about motion of external equipment along with the tumor’s cells. The 
presence of such noise in brain imaging restricts accurate localization of the tumor. 
Handling of multimodal information in datasets: MRI brain imaging acquire data 
from multiple channels which varied in contrast and resolution [34]. This multi-
modal information causes scattering effect due to which boundaries of tumorous 
cells in the brain imaging became blurry and hard to detect. To ensure the accu-
racy of tumor detection, the multi-modal information in the imaging data must be 
handled appropriately. 
Manual labeling: Labeling of tumorous cells in the brain is done manually by 
the medical experts, trainers and practitioners. The manual annotation of brain 
imaging can be varied from small region to larger region. The manual preparation 
of ground truth for the localization of tumor in brain is time consuming and 
required high end skills and expertise. Sometimes experts varied in their decision 
about data labeling that will lead to annotation bias. The ground truth should be 
free from annotation bias for accurate and efficient segmentation results. 
Data imbalance: Public datasets for brain tumor detection are highly unbalanced 
in terms of size of brain imaging [35, 36]. These datasets vary in number of 
voxels in different tumor regions. These datasets have many cases for one region 
while very few for the other regions. This imbalance in datasets impacts algorithm
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learning which do not segment the small tumor accurately in comparison to the 
larger tumors. 
Generalizability: Many AI-based segmentation algorithms have been proposed 
for predicting the brain tumor in brain imaging [18, 35, 37]. These algorithms 
are highly accurate and efficient in predicting various categories of tumor. But 
the performance of these algorithms is evaluated on specific datasets. The perfor-
mance is not tested on variety of datasets to ensure the generalizability of the 
model. In addition, model hyperparameters settings and other details are model 
specific which restricts its applicability to real-time environments. 
Paper to practice: A lot of research papers are published to predict brain cancer by 
accurate segmentation of brain imaging. However, most of the work is theoretical 
and real-time deployment is either not possible or time-consuming. The overall 
deployment cost and accuracy in real-time environments is also one of the main 
reasons that restricts the clinical deployment of these works. There is a requirement 
of robust algorithms that will predict efficient results and meet the needs of medical 
personnel when applied to real-time situations. 

The rest of the chapter is organized as follows. Section 3.2 categories the AI-
based brain tumor predictive models into various categories. Section 3.3 classifies 
the conventional approaches for brain tumor segmentation algorithms. The salient 
features of each methodology under each category are investigated in detail. The 
advanced approaches are classified and salient details for each category are high-
lighted in Sect. 3.4. Section 3.5 compares and evaluates the various AI-based brain 
tumor detection methods. Lastly, the concluding remarks and future directions are 
sketched in Sect. 3.6. 

3.2 AI-Based Predictive Models for Brain Tumor 
Prediction 

Classification of tumorous cells from its neighboring tissues requires skilled and 
expert physician with detailed knowledge of brain anatomy and its illnesses. Simi-
larly, MRI and CT images of brain also possess significant challenges for processing 
image, eliminating noise, tumor recognition and explanation. To address these chal-
lenges, AI-based predictive models for brain tumor detection have proved highly 
accurate and efficient. These are non-invasive which can automatically segment the 
tumor so that proper treatment can be provided to the patient. Broadly, AI-based 
brain tumor detection models are categorized either as conventional approaches or 
advanced approaches. Figure 3.2 illustrates the categorization of AI-based brain 
tumor prediction model. The various categories are represented in a tree-like structure 
to provide the clarity of various methodologies under each classification.

Conventional approach consists of two categories of algorithms. These techniques 
utilized either ML [4, 38, 39] or non-ML [16, 37, 40] algorithms for proposing 
efficient tumor segmentation frameworks. ML algorithms exploited techniques such
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Fig. 3.2 Categorization of AI-based predictive models for brain tumor detection

as logistic regression (LR), multi-layer perceptron (MLP), support vector machine 
(SVM), random forest (RF), and decision tree (DT). On the other hand, non-ML 
techniques investigated fuzzy c-means [41], dynamic graph learning [37], active 
contouring [40], extreme learning machine [23, 42] and many more [16, 43]  for  
developing robust model for brain cancer prediction. These approaches segmented 
the tumor from MRI or CT scans efficiently to a great ex tent.

Advanced approaches contain either DL-based networks [2, 17, 34] or hybrid 
algorithms [44–46] for segmenting brain tumor from brain imaging. Generally, DL-
based networks utilize CNN, UNet and its variants for generating efficient results. But 
hybrid algorithms combined ML-techniques along with DL-techniques to integrate 
the potential of both the methodologies. The techniques under advanced approaches 
focus to improve the image processing capabilities along with enhanced computa-
tional power. The next section will elaborate on the conventional approaches for 
brain tumor detection in detail. 

3.3 Conventional Approaches for Brain Tumor Prediction 

Brain scan interpretation and understanding is really crucial for identifying the 
regions infected with cancerous cells. For this, conventional approaches have 
provided robust algorithms for classifying the brain imaging, lesion and cancerous 
cells from the MRI and CT scans. These algorithms follow step by step procedure that 
involves image preprocessing, feature extraction, feature selection and classification. 
Under this category, brain tumor detection algorithms are discussed either as ML-
based algorithms or non-ML based algorithms. Table 3.1 tabulates the salient features 
of the representative work categorized in the domain of conventional approaches. The 
details about the ML-based algorithms are as follows.
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3.3.1 Machine-Learning Based Algorithm for Brain Tumor 
Prediction 

In this section, we will discuss the ML algorithms exploited for brain tumor detec-
tion. In this direction, Zhang et al. [39] exploited self-supervised ML approach for 
brain tumor segmentation. Synthetic data was generated for model pretraining and 
developed scalable pipeline for layer decomposition to perform tumor segmenta-
tion tasks. Candidate sourcing was done for validating the potential candidate mask. 
Mask verification for each sample was done to determine low reconstruction error 
sample with high precision. Authors introduced two module computerized method as 
highly accurate and fast method for tumor detection [4]. Initially, image enhancement 
techniques were utilized for improving image contrast and reducing noise in MRI 
imaging. After this, SVM algorithm classified the tumor as meningiomas and pitu-
itary tumors. The method handled MRI images limitations of low contrast, resolution, 
coherence and noise efficiently to improve segmentation accuracy. 

Tumor segmentation in brain imaging is challenging due to variations in tumor 
shape, size and texture. Lesion localization in the brain is also tedious due to complex 
brain structure. To address this, authors utilized RF based unsupervised clustering 
approach along with fused feature vector to classify tumoral region as complete, 
enhancing and non-enhancing [20]. Clustering algorithm utilizes five clusters for 
segmenting the lesion region by calculating values such as min, max, range and 
interval for these clusters. Multiple features were extracted, and fused feature vector 
was generated which fed to the classification algorithm to recognize the labels. On the 
other hand, authors proposed hybridized ML algorithms to classify the brain illnesses 
as stroke or tumor [38]. Feature extraction methods such as neoteric directional based 
quantized extrema pattern, clustering-based wavelet transforms and conventional 
shape descriptors were used for extracting texture, intensity and shaper, respectively. 
The segmented image was subjected to SVM based RF for classify the various classes 
of tumor. 

To summarize, ML-based methods for tumor classification can handle the brain 
imaging limitations by using various image enhancement techniques. These tech-
niques enhance the classification accuracy by handling the low contrast, resolution 
and noise in the images. ML-techniques are also efficient to classify the lesion areas 
into healthy and tumors regions. It can segment the exact boundaries of the abnormal 
regions so that necessary treatment can be extended before it impacts the neigh-
boring cells. The next section will detail the non-ML based algorithms for brain 
tumor detection.
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3.3.2 Non-machine Learning Based Algorithms for Brain 
Tumor Prediction 

Brain diagnostic images require efficient methods to segment so that brain diseases 
can be detected at an early stage. For this, authors introduced improved sparrow 
search algorithms for brain disease classification [16]. Tent chaotic initialization and 
adaptive crossover operation was used as local search strategy to enhance search 
algorithm capabilities. Features were selected using binary operators and fed to 
classification algorithms such as KNN, SVM, DT and RF. KNN achieved highest 
accuracy of 85% in comparison to other classification algorithms. On the other hand, 
Ma et al. [37] exploited multi-scale dynamic graph for capturing spatiotemporal 
information from functional MRI features for detecting brain disorders. Node-level 
features were learned using K graph isomorphism network and spatial attentional 
learning was done suing Sero readout operation. Multiple dynamic spatiotemporal 
features captured at various spatial levels and fused using multi-scale fusion. In 
[41], authors recommended clustering algorithm with fuzzy c-ordered means for 
accurate segmentation of tumor. Bat algorithms was exploited as clustering method 
that calculated the initial centroid and within pixel distance for determining the 
distance among tumor region and non-tumor region. Further, the enhanced capsule 
networks analyzed and categorized the tumor into healthy or cancerous. 

The different size and shape of tumors are challenging to detect due to similar 
contour regions for tumors and the background. To address this, authors utilized active 
contour models to find location, measure shape and size to detect tumor [40]. False 
tumor areas from the suspected tumor areas were eliminated using area ratio scheme. 
False larger sizes were identified using texture analysis. Segmentation area ratio 
localized the tumor in brain accurately. However, Ramachandran et al. [43] proposed 
mutual informative MapReduce and minimum quadrangle classification to address 
the concerns related with big data in brain tumor classification. Mutual informative 
MapReduce is used for eliminating the redundant features in brain tumor detection 
dataset using mutual information at preprocessing step. Minimum quadrangle was 
created using SVM with Lagrange multipliers to improve the classification accuracy. 
Radial basis kernel function and MAXMIN values were compared to detect the tumor 
at an early stage. 

Brain tumor localizes near to brain surface are hard to detect using standard 
detection techniques. To improve the detection accuracy for such kind of tumors, 
Sharif et al. [23] proposed extreme learning machine for tumor classification. For 
accurate segmentation results, triangular fuzzy median filtering and fuzzy based 
unsupervised clustering was applied as an image enhancement technique. Median 
values with different padding and window size were selected for handling noise in 
the images. Similar texture feature obtained from Gabor filter response was used for 
discriminating between pathological and normal brain images. On the other hand, 
authors exploited regularized extreme learning along with hybrid feature for classi-
fying brain tumor [42]. Images were preprocessed using min–max normalization to 
enhance quality by improving contract of brain edges and regions. Hybrid features
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include normalized GIST with PCA (Principal component analysis) normalizing 
GIST with L2-norm. GIST feature represented features using spatial envelope by 
computing spatial structure of the image. Regularized extreme learning not only 
prevents algorithms overfitting but also improves training speed. 

To summarize, accurate identification of tumors is difficult due to variations in 
their size, shape, location and textures. To improve the survival rate, early detection of 
tumor is essential. Conventional techniques have the potential to predict the cancerous 
cells from the neighboring regions and help medical practitioners to provide timely 
diagnosis so that appropriate treatment can be given to the patients at initial stage. 

3.4 Advanced Approaches for Brain Tumor Detection 

In this section, advanced approaches for brain tumor detection are elaborated in two 
categories namely, DL-based algorithms [14, 15, 18, 21] and hybrid algorithms [3, 
19, 44, 47]. DL-models can process large amounts of imaging data efficiently to 
improve model accuracy. On the other hand, hybrid models are powerful with high 
levels of effectiveness and superior efficiency in terms of classification accuracy and 
computation complexity. The details about the DL-based algorithms for brain tumor 
segmentation are follow in turn. 

3.4.1 Deep Learning-Based Algorithms for Brain Tumor 
Prediction 

Table 3.2 tabulates the salient features of the representative work proposed in the 
category of DL-based algorithms for brain tumor detection. The exploited datasets, 
methodology and image modality are also extracted to provide valuable insights 
about the recent advances in the field.

DL-model requires a large amount of training data for producing effective results. 
However, high quality medical data is limitedly available for processing due to 
various environmental issues. To address this issue, authors generated realistic 
synthetic MRI data using generative adversarial networks (GANs) [48]. UNet and 
Swin transformers are utilized for segmenting the tumor from brain imaging. Four 2D 
GANS and 2D diffusion model evaluated comprehensively for brain tumor images 
and annotations. Models were trained using both real and synthetic images which 
improved the model’s classification and segmentation accuracy. Generative model 
results were qualitatively evaluated by neuroradiologist for proving the model’s 
efficiency. 

Typically, DL networks are computationally expensive in comparison to UNet 
models. UNet models can be easily modified to provide efficient segmentation results.



3.4 Advanced Approaches for Brain Tumor Detection 51

Ta
bl
e 
3.
2 

R
ep
re
se
nt
at
iv
e 
w
or
k 
in
 D
L
-b
as
ed
 b
ra
in
 tu

m
or
 p
re
di
ct
io
n 

R
ef
er
en
ce

D
at
as
et
 d
es
cr
ip
tio

n
M
od

el
 u
til
iz
ed
/p
ro
po

se
d

M
od

al
ity

Pe
rf
or
m
an
ce
 

m
ea
su
re
s 

Su
m
m
ar
y 

A
kb
ar
 e
t a
l. 

[ 4
8]
 

B
ra
T
S 
20
20
 (
D
B
1)
 a
nd
 

20
21
(D

B
2)
 

To
ta
l: 
36
9 
(D

B
1)
, 1

25
1 

(D
B
1)
 

T
ra
in
in
g/
Te
st
in
g:
 3
13
/5
6 

(D
B
1)
, 1

19
5/
56
 (
D
B
2)
 

U
N
et
 a
nd
 S
w
in
 tr
an
sf
or
m
er

M
R
I 
Im

ag
in
g

FI
D
, a
nd
 I
S

• 
Tw

o 
m
et
ho
ds
 f
or
 d
at
a 

au
gm

en
ta
tio

n 
na
m
el
y,
 

ge
om

et
ri
c 
an
d 
in
te
ns
ity

 
• 
U
N
et
 m

od
el
 w
ith

 e
xt
ra
 d
ep
th
 

la
ye
r, 
in
st
an
ce
 n
or
m
al
iz
at
io
n,
 

an
d 
cr
os
s 
en
tr
op
y 
lo
ss
 

• 
T
ra
in
ed
 a
nd

 im
pl
em

en
te
d 
sw

im
 

tr
an
sf
or
m
er
 u
si
ng
 

M
M
Se
gm

en
ta
tio

n,
 a
nd
 

3-
ch
an
ne
l R

G
B
 im

ag
es
 

A
lm

uf
ar
eh
 

et
 a
l. 
[ 1
4]
 

D
B
 f
ro
m
 S
ou
th
er
n 
M
ed
ic
al
 

U
ni
ve
rs
ity
, G

ua
ng
zh
ou
 

To
ta
l: 
30
64
 f
ro
m
 2
33
 

pa
tie

nt
s 

M
en
in
gi
om

a/
G
lio

m
a/
 

Pi
tu
ita
ry
: 7

08
/1
42
6/
93
0 

Y
O
L
O
v5
 a
nd
 Y
O
L
O
v7

M
R
I 
Im

ag
in
g

C
M
, P

R
, R

E
, m

ea
n 

an
d 
av
er
ag
e 
PR

 
• 
B
ra
in
 im

ag
in
g 
se
gm

en
te
d 
to
 

ca
te
go

ri
ze
 tu

m
or
 in

to
 th

re
e 

di
st
in
ct
 c
la
ss
es
 

• 
A
dv
an
ce
d 
m
as
k 
al
ig
nm

en
t a
s 

pr
ep
ro
ce
ss
in
g 
st
ep
 f
or
 b
et
te
r 

pr
ec
is
io
n 

• 
D
if
fe
re
nt
 Y
O
L
O
 a
lg
or
ith

m
s 
to
 

te
st
 th

e 
ca
pa
bi
lit
y 
fo
r 
m
od

el
 f
or
 

ac
cu
ra
te
 s
eg
m
en
ta
tio

n 
re
su
lts
 

A
na
ya
-I
sa
za
 

et
 a
l. 
[ 1
8]
 

B
ra
T
S2

02
0 
ch
al
le
ng
e 
D
B
 

To
ta
l: 
36

9 
im

ag
es
 

U
N
et

M
R
I 
im

ag
in
g

D
SC

, I
oU

, A
C
C
, 

C
om

pu
ta
tio

n 
tim

e,
 

H
au
sd
or
ff
 m

et
ri
cs
 a
nd
 

p-
va
lu
e 

• 
D
es
ig
ne
d 
4-
st
ag
e 

en
co
de
r-
de
co
de
r 
tr
an
sf
or
m
er
s 

• 
C
ro
ss
-a
tte

nt
io
na
l m

od
el
 w
ith

 
se
pa
ra
bl
e 
co
nv
ol
ut
io
na
l l
ay
er
 

fo
r 
lig

ht
 w
ei
gh
t c
om

pu
ta
tio

n 
• 
M
od

ifi
ed
 a
tte

nt
io
n 
m
od

el
 b
y 

m
od
if
yi
ng
 tr
an
si
tio

n 
la
ye
rs
, 

en
co
de
r 
an
d 
de
co
de
r 
bl
oc
ks

(c
on
tin

ue
d)



52 3 Diagnosis and Prediction of Brain Tumor Using Artificial Intelligence

Ta
bl
e
3.
2

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
de
sc
ri
pt
io
n

M
od
el
ut
ili
ze
d/
pr
op
os
ed

M
od

al
ity

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

C
ha
uh

an
 e
t a
l. 

[ 1
5]
 

B
ra
T
S2

01
8 
da
ta
se
t 

T
ra
in
in
g/
V
al
id
at
io
n/
Te
st
: 

28
5/
66
/1
91
 

U
N
et
, P

SP
N
et
, D

ee
pL

ab
V
3 
+ 

an
d 
R
es
N
et
50

 
M
R
I 
im

ag
in
g

D
SC

, S
E
N
, S

PE
• 
U
til
iz
ed
 p
re
pr
oc
es
si
ng

 s
te
ps
 

su
ch
 a
s 
cr
op
pi
ng
, r
es
iz
in
g,
 a
nd
 

no
rm

al
iz
at
io
n 

• 
T
um

or
 s
eg
m
en
ta
tio

n 
us
in
g 

9-
la
ye
r 
U
N
et
 li
ke
 d
es
ig
n 

• 
7-
la
ye
r 
U
N
et
 f
or
 a
ug
m
en
tin

g 
tu
m
or
 s
eg
m
en
ta
tio

n 
re
su
lts
 a
s 

in
pu
t 

K
hu
sh
i e
t a
l. 

[ 2
2]
 

K
ag
gl
e 
da
ta
se
t 

To
ta
l/T

ra
in
in
g/
Te
st
: 3

26
4/
 

28
70
/3
94
 

A
le
xN

et
, V

G
G
16
, V

G
G
19
, 

R
es
N
et
50
, I
nc
ep
tio

nV
3,
 

D
en
se
N
et
12
1,
 v
ar
ia
nt
s 
of
 

E
ffi
ci
en
tN

et
 a
nd

 C
us
to
m
iz
ed
 

E
ffi
ci
en
tN

et
B
7 

M
R
 I
m
ag
es

A
C
C
, l
os
s,
 P
R
, S

E
N
, 

SP
E
, R

E
, F

1-
sc
or
e,
 

m
ea
n 
Io
U
 a
nd

 C
M
 

• 
A
pp

lie
d 
pr
ep
ro
ce
ss
in
g 
to
 

im
pr
ov
e 
th
e 
im

ag
e 
qu

al
ity

 a
nd

 
in
cr
ea
se
 tr
ai
ni
ng

 d
at
a 
si
ze
 

• 
M
ul
tip

le
 C
N
N
 n
et
w
or
ks
 a
lo
ng

 
w
ith

 T
L
 f
or
 e
ffi
ci
en
t o

ut
co
m
es
 

• 
A
dd
iti
on
al
 la
ye
rs
 in

cl
ud
in
g 

gl
ob
al
 a
ve
ra
ge
 p
oo
lin

g,
 d
en
se
 

la
ye
r 
an
d 
so
ft
m
ax
 c
la
ss
ifi
er
 f
or
 

m
od

ifi
ed
 E
ffi
ci
en
tN

et
B
7 
m
od

el
 

L
ee
 e
t a
l. 
[2
]

Pu
bl
ic
 d
at
as
et
s:
 F
ig
sh
ar
e,
 

B
hu
va
ji 
on
 K
ag
gl
e 
an
d 

B
r3
5H

 b
y 
H
am

ad
a 

To
ta
l/T

ra
in
in
g/
V
al
id
at
io
n/
 

Te
st
: 4

80
0/
19
20
/4
80
/2
40
0 

V
iT
-B
/1
6,
 M

ax
V
iT
-B
, 

T
re
sN

et
-M

, a
nd
 

E
ffi
ci
en
tN

et
V
2-
M
 

M
R
 im

ag
es

A
C
C
, a
nd
 F
1-
sc
or
e

• 
R
ed
uc
ed
 n
oi
se
 in

 M
R
 im

ag
es
 

by
 a
pp
ly
in
g 
G
au
ss
ia
n 
fil
te
rs
 

• 
Pa
tte
rn
ed
 G
ri
dM

as
k 
fo
r 

ge
ne
ra
liz
ed
 p
er
fo
rm

an
ce
 o
f 

de
ep
 n
eu
ra
l n

et
w
or
ks
 

• 
C
om

pu
te
r 
ai
de
d 
di
ag
no

si
s 
fo
r 

im
pr
ov
ed
 r
es
ul
ts
 a
nd

 e
ar
ly
 

de
te
ct
io
n 
of
 tu

m
or

(c
on
tin

ue
d)



3.4 Advanced Approaches for Brain Tumor Detection 53

Ta
bl
e
3.
2

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
de
sc
ri
pt
io
n

M
od
el
ut
ili
ze
d/
pr
op
os
ed

M
od

al
ity

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

L
i e
t a
l. 
[1
7]

B
ra
T
s2
01
9,
 B
ra
T
s 
20
20
 a
nd
 

Ju
n 
C
he
ng
 

V
ec
to
r 
qu

an
tiz

ed
 v
ar
ia
tio

na
l 

au
to
en
co
de
r 

M
R
 im

ag
es

D
SC

, S
E
N
, S

PE
, a
nd
 

H
D
95
 

• 
C
or
re
ct
ed
 b
ra
in
 tu

m
or
 

se
gm

en
ta
tio

n 
er
ro
rs
 u
si
ng
 

co
rr
ec
tiv

e 
di
ff
us
io
n 

• 
R
ed
uc
ed
 m

od
el
 d
im

en
si
on

al
ity

 
to
 im

pr
ov
e 
m
od

el
 s
ta
bi
lit
y 

• 
E
nh
an
ce
d 
se
gm

en
te
d 

pe
rf
or
m
an
ce
 b
y 
us
in
g 

m
ul
ti-
fu
si
on

 a
tte

nt
io
n 

m
ec
ha
ni
sm

 

L
iu
 e
t a
l. 
[3
4]

B
ra
T
s 
20
22
 a
nd
 

se
lf
-g
en
er
at
ed
 D
B
 

D
L
-f
ra
m
ew

or
k

M
ul
ti-
m
od
al
 

M
R
 im

ag
es
 

D
SC

, J
C
, S

E
N
, S

PE
, 

PR
, i
nf
er
en
ce
 ti
m
e 

an
d 
H
au
sd
ro
ff
 

di
st
an
ce
 

• 
H
ig
hl
ig
ht
ed
 tu

m
or
 r
el
at
ed
 

fe
at
ur
es
 u
si
ng

 m
ul
ti-
m
od

al
 

br
ai
n 
im

ag
es
 

• 
Fe
at
ur
e 
al
ig
nm

en
t m

od
ul
e 
to
 

le
ar
n 
fr
om

 r
ob
us
t f
us
ed
 f
ea
tu
re
s 

• 
G
lo
ba
l c
or
re
la
tio

n 
bl
oc
k 
to
 

ob
ta
in
 f
us
ed
 f
ea
tu
re
s 
fr
om

 f
ul
ly
 

co
nn

ec
te
d 
la
ye
rs
 

M
et
le
k 
an
d 

C
et
in
er
 [
35
] 

B
ra
T
S2

01
8 
(D

B
1)
, B

ra
T
S 

20
19
 (
D
B
2)
, B

ra
T
S 
20
20
 

(D
B
3)
 

To
ta
l/T

ra
in
in
g/
V
al
di
at
io
n/
 

Te
st
in
g:
 6
60
/3
69
/1
25
/1
66
 

(D
B
1)
, 6

26
/3
35
/1
25
/1
66
 

(D
B
2)
, 5

42
/2
85
/6
6/
18
1 

(D
B
3)
 

R
es
U
N
et
 +

M
R
I

D
SC

, J
C
, A

C
C
, S

PE
, 

SE
N
, P

R
 a
nd
 lo

ss
 

gr
ap
h 

• 
M
od
ifi
ed
 e
nc
od
er
 s
ta
ge
 to

 
ob

ta
in
 lo

w
-l
ev
el
 f
ea
tu
re
s 

• 
In
co
rp
or
at
ed
 r
es
id
ua
l b

lo
ck
s 
in
 

en
co
de
r 
to
 a
dd
re
ss
 v
an
is
hi
ng
 

gr
ad
ie
nt
 p
ro
bl
em

 
• 
A
dd
ed
 n
od
es
 in

 e
nc
od
er
 a
nd
 

de
co
de
r 
la
ye
r 
to
 o
bt
ai
n 
th
e 
lo
st
 

fe
at
ur
es

(c
on
tin

ue
d)



54 3 Diagnosis and Prediction of Brain Tumor Using Artificial Intelligence

Ta
bl
e
3.
2

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
de
sc
ri
pt
io
n

M
od
el
ut
ili
ze
d/
pr
op
os
ed

M
od

al
ity

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

R
en
 e
t a
l. 
[4
9]
 
B
ra
T
S 
20
23
 

T
ra
in
in
g/
Te
st
: 9

/1
 

3D
 U
N
et

M
R
I

D
SC

, a
nd
 H
D
95

• 
R
es
ca
le
d 
vo
xe
l i
nt
en
si
tie

s 
in
 

im
ag
es
 to

 id
en
tif
y 
im

po
rt
an
t 

fe
at
ur
es
 

• 
H
is
to
gr
am

 c
on

tr
as
t m

at
ch
in
g 
to
 

im
pr
ov
e 
in
te
ns
ity

 d
is
tr
ib
ut
io
n 
in
 

th
e 
im

ag
es
 

• 
In
co
rp
or
at
ed
 e
dg
e 
lo
ss
 

co
m
po
ne
nt
 to

 o
bt
ai
n 
co
rr
ec
t 

bo
un
da
ry
 in

fo
rm

at
io
n 
an
d 

re
du
ce
 in

te
ns
ity

 d
ep
en
de
nc
y 

Sh
ah
 e
t a
l. 

[ 5
0]
 

B
ra
T
S 
20
15
 s
ub
se
t D

B
 f
ro
m
 

K
ag
gl
e 

To
ta
l/U

til
iz
ed
/I
nf
ec
te
d/
 

H
ea
lth

y:
 3
76
2/
30
60
/1
50
0/
 

15
00
 

T
ra
in
in
g/
V
al
id
at
io
n/
Te
st
: 

24
00
/6
00
/6
0 

E
ffi
ci
en
tN

et
-B

0
M
R
I

A
C
C
, P

R
, S

E
N
, S

PE
, 

L
os
s,
 C
M
, R

O
C
 a
nd
 

F1
-s
co
re
 

• 
Fo

llo
w
ed
 th

re
e 
st
ep
s 

pr
ep
ro
ce
ss
in
g 
st
ra
te
gy

 to
 

im
pr
ov
e 
im

ag
es
 lo

w
 q
ua
lit
y 

• 
A
dd
iti
on
al
 la
ye
rs
 in

 
E
ffi
ci
en
tN

et
-B

0 
to
 im

pr
ov
e 

cl
as
si
fic

at
io
n 
ac
cu
ra
cy
 

• 
D
at
a 
au
gm

en
ta
tio

n 
to
 in

cr
ea
se
 

tr
ai
ni
ng

 d
at
as
et
 s
iz
e 
fo
r 

pr
ev
en
tin

g 
m
od
el
 o
ve
rfi
tti
ng

(c
on
tin

ue
d)



3.4 Advanced Approaches for Brain Tumor Detection 55

Ta
bl
e
3.
2

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
de
sc
ri
pt
io
n

M
od
el
ut
ili
ze
d/
pr
op
os
ed

M
od

al
ity

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

Z
ai
to
on
 a
nd
 

Sy
ed
 [
51
] 

B
ra
T
S1

7 
(D

B
1)
, B

ra
T
S1

8 
(D

B
2)
, B

ra
T
S1

9 
(D

B
3)
, 

B
ra
T
S2

0 
(D

B
4)
 

To
ta
l/p

at
ie
nt
s:
 8
85

/2
85

 
(D

B
1)
, 7

98
/2
66
 (
D
B
2)
, 8

55
/ 

28
5 
(D

B
3)
, 1

00
5/
33
5 
(D

B
4)
 

To
ta
l/H

G
G
/L
G
G
: 3

51
5/
 

23
45
/1
16
8 

R
U
-N

et
2 
+

M
R
I

A
C
C
, P

R
, R

E
, 

F1
-s
co
re
, D

SC
, C

M
 

an
d 
R
O
C
-A
U
C
 

• 
C
ox

 m
ul
tiv

ar
ia
te
 m

od
el
 to

 
an
al
yz
e 
th
e 
su
rv
iv
ab
ili
ty
 

pr
ed
ic
tio

n 
• 
In
te
gr
at
ed
 d
et
ec
tio

n,
 

se
gm

en
ta
tio

n,
 c
la
ss
ifi
ca
tio

n,
 

an
d 
ri
sk
 p
re
di
ct
io
n 
fo
r 
ea
rl
y 

pr
og
no
si
s 

• 
C
on
vo
lu
tio

na
l n

or
m
al
iz
ed
 m

ea
n 

fil
te
r 
fo
r 
im

ag
e 
en
ha
nc
em

en
t f
or
 

be
tte

r 
cl
as
si
fic

at
io
n 
ac
cu
ra
cy
 

A
gg
ar
w
al
 

et
 a
l. 
[ 5
2]
 

B
ra
T
S 
20
20
 f
ro
m
 K
ag
gl
e 

To
ta
l/T

ra
in
in
g/
Te
st
: 3

69
/ 

12
5/
16
9 

E
nh

an
ce
d 
R
es
N
et

M
R
I

A
C
C
, R

E
, M

SE
, 

PS
N
R
, c
om

pu
ta
tio

na
l 

tim
e,
 J
C
, D

SC
, S

E
N
, 

SP
E
 a
nd
 F
1-
M
ea
su
re
 

• 
Ju
m
p 
re
la
tio

ns
hi
p 
co
m
bi
ne
d 

w
ith

 c
on
vo
lu
tio

n 
in
pu
t f
or
 

ro
bu
st
ne
ss
 

• 
Id
en
tifi

ca
tio

n 
fu
nc
tio

n 
to
 

id
en
tif
y 
si
gn
ifi
ca
nt
 la
ye
r 
fo
r 

be
tte

r 
bo

tto
m
 le
ve
l p

ro
ce
ss
in
g 

• 
U
til
iz
ed
 lo

ng
 s
ki
p 
co
nn

ec
tio

n 
in
 

th
e 
re
si
du

al
 n
et
w
or
k

(c
on
tin

ue
d)



56 3 Diagnosis and Prediction of Brain Tumor Using Artificial Intelligence

Ta
bl
e
3.
2

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
de
sc
ri
pt
io
n

M
od
el
ut
ili
ze
d/
pr
op
os
ed

M
od

al
ity

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

B
eh
er
a 
et
 a
l. 

[ 2
1]
 

N
IT
R
-D

H
H
 (
D
B
1)
, D

S-
75
 

(D
B
2)
, D

S-
16
0 
(D

B
3)
 

To
ta
l: 
35
6(
D
B
1)
, 7

5(
D
B
2)
, 

16
0 
(D

B
3)
 

A
ug
m
en
te
d 
si
ze
: 2

93
2 

(D
B
1)
, 1

50
4 
(D

B
2)
, 2

10
0 

(D
B
3)
 

T
ra
in
in
g/
V
al
id
at
io
n/
Te
st
: 8

/ 
1/
1 

Si
m
pl
e 
lin

ea
r 
ite

ra
tiv

e 
cl
us
te
ri
ng

 b
as
ed
 s
up

er
 p
ix
el
 

w
ith

 C
N
N
 

M
R
I

A
C
C
, S

E
N
, S

PE
, P

R
, 

F1
-s
co
re
, 

co
m
pu

ta
tio

na
l t
im

e 
an
d 
C
M
 

• 
E
xt
ra
ct
ed
 te
xt
ur
e 
fe
at
ur
es
 a
nd

 
pe
rf
or
m
ed
 C
N
N
 b
as
ed
 

cl
as
si
fic

at
io
n 

• 
D
if
fe
re
nt
 s
up
er
pi
xe
ls
 in

pu
ts
 

fr
om

 m
ul
tip

le
 d
at
as
et
s 
to
 te
st
 

ge
ne
ra
liz

ab
le
 p
er
fo
rm

an
ce
 

• 
B
in
ar
y 
cl
as
si
fic

at
io
n 
of
 b
ra
in
 

tu
m
or
 e
ith

er
 a
s 
no
rm

al
 o
r 

ab
no
rm

al
 

W
an
g 
et
 a
l. 

[ 5
3]
 

In
 V
iv
o 
H
yp
er
sp
ec
tr
al
 

hu
m
an
 b
ra
in
 (
D
B
1)
 a
nd
 

M
ul
tid

im
en
si
on

al
 

C
ho
le
do
ch
 (
D
B
2)
 

M
ed
H
SI
s:
 3
6 
(D

B
1)
, 1

74
 

(D
B
2)
 

D
ee
p 
au
to
en
co
de
r

M
ic
ro
sc
op
y 

hy
pe
rs
pe
ct
ra
l 

im
ag
in
g 

O
ve
ra
ll 
A
C
C
, a
ve
ra
ge
 

A
C
C
, a
nd

 K
ap
pa
 

co
ef
fic

ie
nt
 

• 
C
la
ss
ifi
er
 a
nd

 f
ea
tu
re
 e
xt
ra
ct
io
n 

in
te
gr
at
ed
 to

 r
ob
us
t f
ea
tu
re
 

ex
tr
ac
tio

n 
• 
E
xt
ra
 c
os
in
e 
m
ar
gi
n 
in
to
 

em
be
dd
ed
 s
of
t-
m
ax
 fo

r c
om

pa
ct
 

an
d 
se
pa
ra
bl
e 
fe
at
ur
e 
ex
tr
ac
tio

n 
• 
U
til
iz
ed
 tw

o-
st
ag
e 
tr
ai
ni
ng

 
st
ra
te
gy

 f
or
 b
et
te
r 
A
C
C
 

D
B
: D

at
ab
as
e,
 F
ID

: F
re
ch
et
 in

ce
pt
io
n 
di
st
an
ce
, I
S:
 I
nc
ep
tio

n 
sc
or
e,
 M

R
I:
 M

ag
ne
tic
 r
es
on
an
ce
 im

ag
in
g,
 G
L
C
M
: G

ra
y 
le
ve
l c
o-
oc
cu
rr
en
ce
 m

at
ri
x,
 H
G
G
: H

ig
h-

gr
ad
e 
gl
io
m
a,
 L
G
G
: L

ow
 g
ra
de
 g
lio

m
a,
 C
M
: C

on
fu
si
on

 m
at
ri
x,
 A
C
C
: A

cc
ur
ac
y,
 S
E
N
: S

en
si
tiv

ity
, S

PE
: S

pe
ci
fic

ity
, P

R
: P

re
ci
si
on

, R
E
: R

ec
al
l, 
D
SC

: D
ic
e 
sc
or
e 

co
ef
fic

ie
nt
, J
C
: J
ac
ca
rd
 C
oe
ffi
ci
en
t, 
Io
U
: I
nt
er
se
ct
io
n-
ov
er
-u
ni
on

, A
U
C
: A

re
a 
un

de
r 
th
e 
cu
rv
e,
 R
O
C
: R

ec
ei
ve
r 
op

er
at
in
g 
ch
ar
ac
te
ri
st
ic
s,
 P
SN

R
: P

ea
k 
si
gn
al
 to

 
no
is
e 
ra
tio

, M
SE

: M
ea
n 
sq
ua
re
 e
rr
or



3.4 Advanced Approaches for Brain Tumor Detection 57

In this direction, authors designed the UNet into 4-stage deep encoder-decoder struc-
ture with cross-attention model and separable convolutional layers [18]. Separable 
convolutional layers were low cost and improve the computational efficiency of the 
model. Dice coefficient loss function was used to compute the difference between 
the predicted values and the ground truth values to improve model’s performance. 
Zaitoon and Syed [51] employed RUNet2+ (Residual UNet 2+) for precise detection 
of brain tumor. Survivability rate was also predicted by incorporating the Cox multi-
variate model on the extracted features. Convolutional normalized mean filter was 
used in preprocessing step for noise removal while preserving the edges. DBT-CNN 
was adopted for tumor multi-class classification including high-grade glioma and 
low-grade glioma. But authors developed hybrid UNet as ResUNet+ based on the 
residual block [35]. HighHat and lowHat transformations were applied at prepro-
cessing to reduce the impact of illumination variations in MRI images. Model was 
trained with random weights without pretrained weights for better segmentation 
accuracy. On the other hand, authors constructed segmentation network for multi-
modal MRI images based on 3D UNet [49]. Z-Score normalization is utilized to cater 
intensity variations in images. Feature visibility was enhanced by rescaling voxel 
intensities to ease important feature identification. Histogram contrast matching for 
aligning intensity distributions between images with different contrast. 

Early tumor detection with accuracy is crucial to provide sufficient treatment for 
improving the chances of life survival. For this, authors utilized multiple pretrained 
models along with different variants of EfficientNet [22]. Images were resized 
and cropped to highlight the salient features. FastNIMeans denoising colored filter 
removed the noise from images and augmentation technique to prevent model over-
fitting. Among all the networks EfficientNetB7 was highly accurate as additional 
layers and fine tuning was done to improve the overall accuracy. Similarly, authors 
fine-tuned the base model of EfficientNet-B0 for detecting brain tumor efficiently 
[50]. Three step preprocessing strategy was followed to improve the brain images 
for segmentation process. Adam optimizer was utilized for optimizing the network 
hyperparameters such as learning rate, and loss function to improve segmentation 
accuracy. Similarly, authors compared segmentation accuracy for various DL-models 
such as UNet, PSPNet, DeepLabV3+ and ResNet50 [15]. Out of these, 3D UNet 
obtained the highest segmentation accuracy. Transfer learning of pre-trained weights 
was used for fine tuning of model to improve computational efficiency of the model. 
Also, Lee et al. [2] demonstrated the segmentation performance for brain tumor 
detection using four DL-models. Image enhancement such as noise removal and 
generalization strategies were adopted to improve early detection accuracy. Model 
performed the multiclass classification of brain tumor into glioma, meningioma, 
pituitary and healthy tissues. 

In another line of work, authors utilized hyperspectral images for diagnosis 
of tumor by utilizing deep margin cosine autoencoder [53]. Basic architecture of 
MedHSI was used for feature extraction and soft-max classifier for predicting the 
labels from the output layer. Extra cosine margin was used in soft-max classi-
fier to maximize angular space for extracting compact and separable features for 
obtaining great results. Behera et al. [21] presented an ensembled approach based
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on transfer learning by utilizing linear iterative superclustering-based superpixel 
with CNN. Superclustering segmented the image into clusters based on the simi-
larity measures determined by perceptual feature space. In [17], authors devel-
oped corrective diffusion model for enhancing segmentation performance. Vector 
quantized variational autoencoder compressed images for improving model stability 
by reducing dimensionality of training data. Multi-fusion attentional mechanism 
enhanced segmentation model reliability and flexibility. 

Segmenting the brain tumor without ignoring the brain appearance information is 
needed for accurate tumor segmentation. For this, authors proposed multimodal DL 
framework with variational autoencoder to present brain images based on latent distri-
bution [34]. In the decoder layer, feature alignment module was presented to resolve 
the feature compatibility issues between the multimodal brain tumor and monomodal 
normal brain images. Fusion module based on global correlation block concatenated 
the features from same channel to generate fused feature. On the other hand, authors 
compared YOLOv5 and YOLOv7, object detection algorithms for classification of 
brain tumor as meningiomas, gliomas and pituitary [14]. Mask alignment scheme 
for standardizing the dataset images for better training outcome. Techniques were 
applied to identify the tumor boundaries for accurate segmentation of the tumor. 

To summarize, timely tumor brain tumor detection is challenging and necessary 
to increase the survival rate. The evolution in DL-based algorithms have improve the 
segmentation performance and shown promising results in tumor detection. These 
algorithms are capable of multi-class classification of brain abnormalities for better 
analysis and appropriate treatment. Pre-processing steps in brain tumor imaging not 
only enhances the image quality but also improves the training computational power 
of the algorithm. 

3.4.2 Hybrid Algorithms for Brain Tumor Prediction 

Brain tumors are becoming the major cause of death globally because of inaccurate 
and late diagnosis. The reason could be the time taken for model training by large 
datasets which delayed the outcome. Due to this, there is a requirement of hybrid 
models which not only process the training data quickly but also provide effective 
and efficient results. Table 3.3 tabulates the salient features of representative work 
utilizing hybrid approach in their algorithms. The dataset description, performance 
metrics and exploited methodology are also elaborated to understand the innovation 
and advancement in the field.

Authors introduced hybrid model by integrating CapsNet model with VGGNet 
model for automatic and accurate segmentation of brain tumor [44]. The problems of 
model training with large datasets were addressed by automatic extraction of radiomic 
features for brain cancer classification. Transfer learning models were optimized for 
extracting complex features for brain tumor classification into four classes as normal, 
pituitary, meningioma and glioma. Aggarwal et al. [54] employed hybrid model in 
which features were extracted using CNN and multiple ML models for brain tumor
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classification. CNN model utilized pooling layer to reduce the image dimensionality 
by preserving the significant data for faster computations. Automatic optimization 
of the model prevented overfitting by maintaining the low learning rates. But authors 
recommended to preprocess the images using adaptive contrast enhancement, median 
filter and fuzzy c-means based segmentation for eliminating the noise from images 
and improve their quality [3]. Multiple features were extracted using Gray-level co-
occurrence matrix and abnormal tissues were classified from the healthy tissues using 
ensembled DL SVM. Hossain et al. [19] proposed multi-class classification of tumor 
using ensemble models with transfer learning approach. Several DL models were 
investigated with three best performing transfer learning models for detecting brain 
tumors. In addition, model explainability model local interpretable model-agnostic 
explanations (LIME) was used to generate interpretable model for result validity. 

Automatic segmentation of brain tumors is significantly effective to save signif-
icant time and cost. Pretrained hybrid DL-models can efficiently classify tumors 
from brain imaging. In this direction, authors proposed ResNext101_32 × 8d and 
VGG19 models for brain tumor classification into two classes [45]. Single image 
super-resolution method was applied to enhance image resolution so that crucial 
features can be captured easily. Data augmentation techniques were used by both 
the models to prevent overfitting. ResNext101_32 × 8d utilized rotation, horizontal 
and vertical flip, whereas VGG19 exploited rotation, width and height shift for data 
augmentation. However, authors integrated UNet, CNN and modified self-organizing 
feature map (mSOFM) for precise segmentation of tumor [56]. UNet was used for 
image segmentation and mSOFM for capturing complex data patterns. mSOFM also 
predicted patient survivability by analyzing the segmented images. UNet encoder 
section captured contextual information and decoder section recovered the spatial 
information to generate segmentation mask. Shah et al. [55] proposed voting system 
based semi supervised Bayesian ensemble attention mechanism for multiclass brain 
tumor classification. Voting technique used for identifying the final abnormality. 
Squeeze and excitation attention network integrated into CNN for selecting efficient 
features by scaling each feature with a weight parameter. 

To improve medical aid for brain tumor patients, hybrid technique proposed by 
handling the issues of class imbalance and time consumption [47]. Image resizing 
and augmentation techniques were applied during preprocessing to improve image 
quality and prevent model overfitting. Pre-trained deep neural network such as Incep-
tionV3, DenseNet121 and ResNet50 were used for feature extraction and SVM for 
classifying the MRI images either as infected or healthy. On the other hand, authors 
utilized 3D-UNet and 2D-UNet DL models for feature extraction [58]. For tumor 
classification, ML models KNN and gradient boosting classifier were combined 
using soft voting. Vinu et al. ensembled CNN, RNN, KNN and RF for achieving 
high segmentation accuracy [57]. High end intricate tumor features such as shape, 
depth and model were extracted for knowing the tumor in-depth. Resizing and rota-
tion were applied during preprocessing for enhancing dataset capabilities for robust 
feature extraction. In [59], authors developed 2D CNN and convolutional auto-
encoder network for multi-class classification of brain tumor. Model consisted of 
two parts namely, convolutional auto encoder for feature extraction and CNN along
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with six ML algorithm for tumor classification. Encoder network removed the critical 
feature and output layer provided the classification outcome. Similarly, Renugadevi 
et al. [46] investigated encoder-decoder UNet++ architecture along with ML tech-
niques for robust feature extraction and tumor classification. Regression techniques 
such as SGD, linear, ridge and extreme gradient boosting were also utilized predicting 
the lifetime of high glioma patients. Synthetic minority oversampling and adaptive 
synthetic approaches increased the class size for handling dataset imbalance. PCA 
and tree-based feature selection methodology for determining the robust features. 

To summarize, hybrid models integrated either multiple DL models or DL models 
with multiple ML models for feature extraction and tumor classification. Auto-
matic segmentation of brain tumor for investigating the level and stage of tumor 
for extending proper treatment was done effectively by hybrid models. Various 
preprocessing techniques were utilized for handling the limitation associated with the 
quality, resolution and contrast of the brain imaging. Also, techniques were adopted 
for catering data set imbalance using data augmentation methodology for preventing 
model overfitting. These models are effective and efficient in automatic brain tumor 
segmentation for providing disease management at an early stage. 

3.5 Comparison of Various Artificial Intelligence-Based 
Brain Tumor Prediction Algorithms 

In this section, we have reviewed AI-based tumor prediction algorithms as conven-
tional approaches and advanced approaches. The salient features of each of the tech-
niques are tabulated in Table 3.4. The various parameters are discussed and reviewed, 
and performance is analyzed to provide the future perspective for each technique for 
brain tumor classification and segmentation.

It has been observed that methods under each category have their advantages 
and limitations. These approaches are automatic, effective and accurate to detect 
brain tumors at an early stage. In addition, these approaches have capabilities for 
multi-class classification to predict the severity of cancerous cells in the brain. 
Preprocessing techniques are also investigated to cater the limitations of MRI brain 
imaging such as low contrast, resolution, and noise. Preprocessing techniques not 
only improve the image quality but also ease the tumor segmentation by preserving 
its edges and highlighting its boundaries. Further, data augmentation techniques are 
also helpful in preventing the model from overfitting and improving its accuracy. 

Most of these techniques are published by various researchers. These methods 
are highly accurate, and efficient in terms of various performance metrics proved 
by these researchers. However, very little efforts are undertaken to evaluate these 
methods and determine their validity for real-time deployments. The efficacy of these 
methods should be determined for automatic and early detection of brain tumors for 
clinical deployments.
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Table 3.4 Similarities/differences of various brain tumor prediction techniques 

Attributes Segmentation/classification techniques 

Approach Conventional approach Advanced approach 

Methodology Non-ML ML DL Hybrid 

Feature extraction ✓ ✓ ✓ ✓ 
Feature selection Limited Limited High High 

Preprocessing 
techniques 

✗ ✓ ✓ ✓ 

Dataset Imaging Imaging Imaging Imaging 

Model complexity Less Less Moderate High 

Automation ✗ ✗ ✓ ✓ 
Computational 
resources 

Less Less Moderate High 

Generalizability ✗ ✗ Limited Limited 

Interpretability ✗ ✗ ✓ ✓ 
Performance Moderately 

accurate 
Moderately 
accurate 

Highly accurate Highly accurate

3.6 Summary 

In this chapter, we have exhaustively reviewed the various AI-based brain tumor 
prediction algorithms. For better understanding of the advancements in the field, we 
have categorized the AI-based brain tumor segmentation algorithms as conventional 
techniques and advanced learning techniques. It has been evident that multimodal 
MRI and CT scans are quite popular among medical practitioners to detect the brain 
tumor. However, the images collected by these methodologies are quite poor in 
contrast and resolution. These images are containing noise either due to artefacts 
used in collection or the varying illumination levels. In order to address imaging 
limitations, preprocessing techniques such as image enhancements are applied by 
various researchers. Also, to mitigate the impact of model overfitting, data augmen-
tation techniques are utilized during preprocessing steps only. These initial steps of 
data preparation are really crucial to ensure the high accuracy and efficiency of the 
models. 

AI-based brain tumor detection techniques extract various features from the 
brain imaging to perform the tumor segmentation. Some of the techniques adopt 
feature selection methodology by enhancing the tumor boundaries and edges not 
only to improve the classification accuracy but also to maintain the computational 
complexity. Among all the discussed approaches, hybrid algorithms are highly supe-
rior in terms of effectiveness and efficiency for tumor segmentation. These algo-
rithms consider ensembled approaches in which multiple DL-models are utilized for 
feature extraction and multiple ML-models are exploited for tumor classification.
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The algorithms not only perform multi-class classification but also can predict the 
survivability rate in patients diagnosed with brain tumor. 

In future, good quality multi-modal brain imaging data is required for producing 
accurate segmentation results. The complexity concerns while using auto-encoder 
transformer networks for robust feature extraction need to be addressed. The clinical 
deployment of these methods along with accurate survivability rate prediction is 
accessed for better usability and generalizability of these methods. 
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Chapter 4 
Diagnosis and Prediction of Neurological 
Disorders Using Artificial Intelligence 

Abstract With abrupt changes in living standards, economic instability, and exces-
sive use of social media platforms, people are observed to be vulnerable to mental 
disorders. Mental disorders lead to an increase in stress levels which causes severe 
neurological complications in humans such as depression, suicidal tendencies, and 
other psychiatric problems. AI with its advanced tools has provided support for the 
prediction, monitoring, and planning of mental health illnesses in the population. AI 
has provided predictive models that can analyze health records, brain imaging, and 
clinical notes to identify mental disorders. AI is prevalent in analyzing social media 
platforms such as Twitter, Facebook, and many more for diagnosing depression in 
the user by extracting critical information from the tweets and comments posted by 
them. In this chapter, we have discussed the salient features and limitations of various 
AI-based predictive models useful in addressing mental disorder complications at an 
early stage. 

Keywords Artificial intelligence (AI) · Clinical diagnosis · Social media ·
Signalling data · COVID-19 · Personalised treatment 

4.1 Introduction 

One of the most common reasons for mental illness and neurological complica-
tions is depression. Depression causes an increase in stress levels and is considered 
the foremost reason for mental disability, suicidal ideation, anxiety, schizophrenia, 
bipolar disorder, and psychological impairments [1]. Depression can impact any indi-
vidual regardless of their sex, age, and ethnicity. Depression is a psychic condition 
whose early diagnosis is very crucial to prevent its negative impact on human lives. 
Mental illness impacts the health, remembering ability, cognitive skills, and societal 
well-being of an individual [2]. 

Generally, mental disorders in a human can be diagnosed either clinically or 
by analyzing social media posts. The symptoms such as changes in sleep patterns, 
mood swings, difficulty in making decisions, and variations in concentration are a few
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parameters that help in the clinical diagnosis of mental illness. Clinical depression 
is a neurological disorder that can be identified by analyzing textual data, imaging 
data, and signaling data. For this, electronic health records (EHR) [3–5], Magnetic 
resonance imaging (MRI) scans [6], voice data [7, 8] and Electroencephalography 
(EEG) [9–11] signals are investigated for clinical diagnosis of various mental disor-
ders. On the other hand, social media data is also explored by various researchers 
for the diagnosis of mental illness at an early stage [12–15]. Social media is very 
prevalent among all age groups people and has worldwide connectivity. People’s 
profiles, posts, comments, and suggestions can be examined for predicting depres-
sion, suicidal tendencies, anxiety, and changes in a person’s behavior and attitude 
[16–18]. Figure 4.1 represents various categories for analysis of depression in human 
beings. 

To diagnose mental illness at an early stage, AI-based algorithms have gained 
popularity in the automatic detection of depression, anxiety, and suicidal ideation. AI-
based algorithms can predict critical diseases such as cancer [19], brain stroke [20], 
and many others [21, 22]. AI-based algorithms can be broadly categorized as machine 
learning (ML) based algorithms [12, 18, 23, 24], deep learning (DL) based algorithms 
[25–28], and hybrid algorithms [29–33] for either clinical or social media-based 
diagnosis of mental health. ML-based algorithms utilized Logistic regression (LR), 
Naïve Bayes (NB), Support vector machine (SVM), K-nearest neighbor (KNN), 
Decision tree (DT), and many other popular approaches. DL-based algorithms exploit 
convolutional neural networks (CNN), recurrent neural networks (RNN), Long short-
term memory (LSTM), transformers, and many other extended networks to provide 
efficient results. Hybrid algorithms integrated ML and DL approaches along with

Fig. 4.1 Various methods for diagnosis of mental illness in an individual 
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natural language processing (NLP) and clustering techniques for the detection of 
depression. 

In this chapter, we have analyzed the recent AI-based algorithms exploiting ML, 
DL, and a combination of both for predicting mental health. These algorithms have 
the potential to predict mental illness at an early stage along with its severity level. 
On the other hand, traditional approaches are quite slow and are known to suffer 
from human bias in comparison to AI-based approaches. AI-based is not only fast 
but also efficient and effective in mental health diagnosis. The key contributions of 
this chapter are as follows:

• We have categorized the diagnosis of mental health either clinically or by 
analyzing social media data. The salient features of each category are highlighted 
and elaborated to determine its benefits and limitations.

• AI-based predictive models for mental healthcare are reviewed into three cate-
gories namely, ML-based, DL-based, and hybrid approaches. The potential work 
in each category is elaborated and tabulated to examine the accuracy and efficiency 
of each method.

• Various AI-based solutions are detailed for improving the teaching–learning expe-
rience of students with special needs. AI-based tools are also analyzed to enhance 
the learning ability of specialized students.

• Mental health during the COVID-19 pandemic is analyzed to determine the role of 
social media platforms in predicting mental disorders using AI-based algorithms. 

The rest of the chapter is organized as follows. Section 4.2 details the clinical 
diagnosis and social media-based prediction of various mental disorders. Section 4.3 
classifies AI-based prediction models into various categories. The salient features of 
various methodologies under each category are elaborated to investigate their effi-
ciency and accuracy. Various AI-based methods for students with special needs are 
discussed in Sect. 4.4. In addition, various AI-based tools adopted for enhancing the 
learning abilities of students with special needs are also discussed. Section 4.5 exam-
ines the impact of COVID-19 on people’s mental health and the increase in depres-
sion among people due to isolation and lockdown situations. Lastly, the concluding 
remarks and future directions are sketched in Sect. 4.6. 

4.2 Diagnosis of Mental Disorders 

Mental disorders cause changes in the thoughts, behavior, and personality of a person 
suffering from distress and physiological impairments. Mental disorders can occur 
in humans in the form of depression, anxiety, suicidal ideation, and many other major 
depressive disorders [1]. These disorders can be treated if diagnosed accurately. There 
are two ways to predict depression in human beings, either clinical diagnosis or social 
media-based diagnosis. The details about the clinical diagnosis of depression are as 
follows.
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4.2.1 Clinical Diagnosis of Mental Disorders 

Early prediction and diagnosis of mental disorders can be done through clinical 
intervention. Clinical diagnosis of mental disorders can be done by investigating 
various medical data namely, textual, imaging, voice, and signaling. Textual data 
involves a patient’s prescription, medical notes, or EHR data [3–5]. Imaging data 
considers MRI scans and signaling data analyzed EER signal [6, 34]. Audiovisual 
recordings are analyzed to predict mental-health-related problems so that appropriate 
measures are taken for their treatment [7, 28]. 

In [3], authors have reviewed the work utilizing EHR data, and brain imaging 
data to predict a person’s mental status. EHR data is the subjective and written 
form of analysis of a patient’s mental health. This data has the potential for predi-
agnosis of mental illness with the help of AI-based screening tools. Authors have 
utilized patient’s medical history documented in the form of EHR data for predicting 
depression [4]. This data contains information about the patient’s procedure and 
demographic information for predicting chronic diseases like depression. Similarly, 
Msosa et al. [5] have exploited unstructured data from EHR to diagnose mental 
illness. EHR records are easily accessible, and their processing requirements are 
flexible and simple. These records are considered to be the cheapest and richest 
source of health information crucial for predicting mental wellness. 

Further, MRI data can be categorized as structural MRI (sMRI) and functional 
MRI (fMRI) for analysis of a person’s mental health [24]. sMRI contains anatomical 
details about the human brain whereas fMRI contains underlying brain functioning. 
In [6], authors have processed sMRI to predict various psychiatric disorders [6]. 
sMRI measures the alterations in brain data by analyzing its anatomical structure 
to diagnose critical mental disorders such as schizophrenia and bipolar disorder. 
Mousavian et al. [24] have exploited fMRI for extracting information from various 
brain regions to provide accurate diagnosis. fMRI data of a person can be captured 
either when he is performing any activity or idle. Capturing either of the MRI scans 
is quite expensive. On the other hand, EEG signaling is a non-invasive and effective 
technique that captures electrical signals from the brain for detecting mental disor-
ders [10]. These signals are complex in nature but easy and cheap to record. These 
signals act as a potential biomarker for predicting depressive disorders in a person. 
Figure 4.2 displays the difference in EEG signals recorded for a healthy and depressed 
person. Authors have recorded EEG signals by capturing brain waves for a specified 
duration to predict neurological disorders [11]. Captured EEG signals are analyzed 
for predicting the complex clinical depression in a person. On the other hand, Sarkar 
et al. [34] exploited the EEG dataset from the Kaggle website for predicting clinical 
depression. The datasets consist of various dependent and independent variables for 
determining mental illness.

Audio or speech analysis is a robust technique used for depression estimation 
along with text records and videos [28]. Speech has acoustic features that assess 
depression efficiently. The change in speaking patterns can be observed in a person 
suffering from mental diseases. Audio-visual capture by taking personal interviews



4.2 Diagnosis of Mental Disorders 73

Fig. 4.2 Difference in EEG signal recorded for a normal and depressed person [10]

can be used for predicting depression [7]. These multi-modal data are a strong 
descriptor for diagnosing mental health. Speech analysis is cheap, non-invasive, and 
efficient in predicting neurological disorders. 

To summarize, unstructured data such as clinical notes and EHR records predict 
mental illness efficiently. Careful analysis of these records can recognize changes in 
patient’s behavior and attitude. However, this data is different for different profes-
sions, and extracting relevant information is a complex task. Another potential 
biomarker in determining mental health is MRI scans. These scans are non-invasive 
and provide 3D view of the brain anatomy for better visualization of depression. 
However, MRI scans are of high dimensionality and require a lot of processing power 
to extract desired results. Signaling data such as EER is easy to capture and requires 
less computation for predictions. Multi-modal data such as audio and text informa-
tion are fused efficiently to study depression in a person. Text information comprises 
a set of questionnaires to assess depression and non-depression whereas audio data 
analyses the variation in speech of a person suffering from mental disorders. 

4.2.2 Social Media-Based Diagnosis of Mental Disorders 

Clinical diagnosis of mental depression is fast, accurate, and effective. However, 
due to societal barriers and unawareness people neither have understanding nor have 
acceptability for their mental illness. Due to this proper treatment cannot be provided 
to those people and that will impact their quality of life and peace of mind. Hence, it 
became essential to analyze people’s day-to-day activities and behavior patterns to 
predict the status of their mental health. Textual data from various social networking 
websites can be examined to predict mental disorders at an early stage [2, 12, 13, 35]. 

Recently, social media platforms such as Twitter [13, 15], Facebook [16], and 
Reddit [14, 17] are quite popular among people of all age groups. People create their 
profiles on these websites and share their thoughts, opinions, and emotions which
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can be investigated to detect various mental issues such as depression, anxiety, and 
suicidal ideation. Sharing information on social media platforms not only represents 
one’s day-to-day activities but is also a potential indicator to analyze mental health. 
Social media are investigated to track mental health in a naturalistic way by analyzing 
and interpreting one’s behavior and feelings based on their profile, likes, and thoughts 
sharing [35]. 

Online screening of people’s posts on social media platforms requires a tool 
or API (Application programming interface) that can collect data from people’s 
social accounts with their consent and agreement [13]. These tools or APIs can 
access people’s public data and check for specific keywords or phrases. The related 
keywords such as “depression”, “anxiety”, “suicide”, “kill” and other similar expres-
sions are retrieved from various social media accounts. After this, these gathered 
posts are analyzed using NLP, ML, and/or DL approaches to predict the state of 
mind as depressed or healthy. Sentimental analysis determines linguistic patterns 
along with lexicon evaluation to determine stress, suicidal tendencies, and other 
bipolar disorders. 

4.3 Artificial Intelligence-Based Models for Predicting 
Mental Healthcare 

AI has provided many predictive models for analyzing mental healthcare exploiting 
clinical data such as EHR [4, 25], MRI [24], EER [10, 11], and multi-modality or 
social media posts and profiles. Based on the utilized methodology, AI-based predic-
tive models are broadly categorized into ML-based algorithms, DL-based algorithms, 
and hybrid algorithms. ML-based algorithms utilized various ML techniques such as 
LR [14, 16], SVM [17, 36], KNN [24, 37], and RF [13], along with lexicon analysis 
[24] to detect depression. On the other hand, CNN, RNN, and LSTM [2, 10, 11]  are  
exploited in DL-based predictive models for prediction. Hybrid models integrated 
ML and DL models along with NLP techniques to design a robust model with better 
efficiency and accuracy [31, 32]. Table 4.1 tabulates the similarities and differences 
between AI-based predictive models for predicting various mental disorders.

4.3.1 Machine Learning Based Models for Predicting Mental 
Disorders 

Mental disorders are one of the known reasons for disability and other critical diseases 
such as diabetes, hypertension, and many others [39–41]. It is essential to diagnose 
mental disorders at an early stage to prevent personal and societal loss. For this, 
ML-based algorithms are investigated by various researchers for early diagnosis of 
depressive mental disorders. These algorithms utilize either clinical data or social
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Table 4.1 Similarities and differences between various AI-based predictive models 

SN Attributes ML-based algorithms DL-based algorithms Hybrid algorithms 

1 Techniques LR [14, 16], SVM [17, 
36], KNN [24, 37], 
cluster analysis [15] 

CNN, RNN, LSTM 
[2, 10, 11], 
Transformers [4, 38] 

NLP and a combination 
of both ML and DL 
algorithms [3, 5] 

2 Feature 
selection 

✗ ✓ ✓ 

3 Data types Clinical data and 
social-media data 

Clinical data and 
social-media data 

Clinical data and 
social-media data 

4 Computational 
efficiency 

Less Moderate High 

5 Model 
generalizability 

Limited High High 

6 Performance Less Moderate to High Relatively high 

7 Advantages Simple and easy to 
implement 

Interpretable and 
explainable 

Analyzed pool of data 
with better accuracy 

8 Limitations Less accurate Complex in 
implementation 

Highly complex

media data to predict the extent of mental illness. Table 4.2 tabulates the representative 
work that employs ML-based predictive algorithms to predict the status of mental 
health.

ML-based depression diagnosis analyzes the clinical data namely, text, audio, 
imaging, and signals. In this direction, Chao et al. [23] captured brain responses of 
depressed and healthy patients using fNIRS (functional near-infrared spectroscopy) 
devices. Statistical-based features and vector-based features were extracted from 
brain responses and processed using four variants of neural networks. ReliefF was 
used for selecting robust features and specifying critical brain regions for predicting 
depressive disorder. Authors extracted multiple behavioral features such as speech 
behavior, speech prosody, eye movements, and head pose [36]. Thirty-eight feature 
selection algorithms were utilized for interpreting depression. On the other hand, Hao 
et al. [42] analyzed depression and anxiety in undergraduate students. Questionnaire 
data was collected from selected students and clustered into two distributions namely, 
anxiety and depression using a random sampling method. The correlation between 
these clusters was identified using the correlation analysis method. Similarly, the 
authors surveyed to prepare a dataset from 21 questionnaire details selected using 
the Hamilton tool and psychiatrist suggestions [37]. These details were then analyzed 
using various ML-based algorithms to detect a person suffering from depression. 

Recently, social media has been explored for analyzing depression by studying 
emotional expression and sentiments from the data posted and available on the 
websites. In this direction, authors collected data from Twitter by analyzing tweets 
with timestamps and hashtags related to mental disorders [15]. Similarity calculations 
and stochastic gradient descent were exploited for analyzing sentiment distribution 
to predict the user suffering from severe depression disorders in real-time. Safa et al.
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[13] collected Twitter data and hashtags to detect depression automatically. The 
collected data was evaluated using a multi-modal approach such as n-gram language 
models, LIWC dictionaries, image tagging, and bag-of-visual words (BoW). Nine 
ML-based different classifiers were utilized to measure model effectiveness. Simi-
larly, authors evaluated Twitter users’ accounts and classified them into depressed 
and non-depressed accounts by analyzing activities and content features. Multiple 
ML-based algorithms utilized to predict mental and psychological issues. On the 
other hand, Reddit user data was examined by various authors to categorize the users 
into depression and other bipolar disorders [14, 17]. In [14], authors extracted three 
features namely, psycholinguistic lexical and Reddit user features. These features 
were processed using three ML algorithms namely, SVM, RF, and LR to predict the 
bipolar disorders in users. However, authors extracted three features namely, LIWC, 
LDA, and bigram [17]. These features were analyzed individually and combined 
using various algorithms such as LR, SVM, Adaboost, RF, and MLP to predict the 
presence of depression in social media users. 

To explore the robustness of the methods, authors investigated Twitter data along 
with other social networking data such as Facebook, Reddit, and Victoria Diary to 
predict depression effectively. For this, authors utilized Twitter data for training the 
model, and model performance was tested on other three public datasets to prove the 
model’s generalizability [16]. Textual features were extracted and processed using 
various ML-based classifiers to detect depression in the users. On the other hand, 
authors identified depression in various occupations by gathering individual data 
from different social media sites. Sequential emotion patterns were examined using 
sixteen parameters to predict the severity of depression. 

To summarize, ML-based algorithms examined clinical data and social 
networking profiles to identify persons suffering from mental illness. These models 
extracted multiple features and different ML algorithms to classify the depressed 
users from the healthy. Model performance was reviewed on multiple datasets to 
determine the generalizability and predict signs of depression in human beings. 

4.3.2 Deep Learning Based Models for Predicting Mental 
Disorders 

Table 4.3 tabulates the salient features of the representation work predicting depres-
sion by processing data using DL-based algorithms. DL-based models are exploited 
to predict severe mental illness and level of mental disorders by utilizing high-level 
networks such as CNN, RNN, LSTM, and transformers. In this direction, authors 
integrated bidirectional LSTM and CNN and evaluated the performance on multi-
modal datasets containing voice and text information for predicting clinical depres-
sion [7]. 1-D and 2-D audio signals were extracted and integrated with mapped 
numeric values obtained from text information using multiple DL models. The 
obtained softmax values from DL models were ensembled to predict depression.
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However, the performance of the model was evaluated on limited data size due to a 
smaller number of participants. To address this, authors proposed an Audio-assisted 
BERT model based on DL architecture to predict depression by integrating multiple 
modalities such as audio and text information [8]. Pre-trained text and audio models 
composed of multiple components are processed using the dual self-attentional model 
to improve classification accuracy and enhance model performance. However, the 
authors addressed the limitation of smaller datasets by expanding training labels and 
feature transfer learning [28]. Low- and high-level audio features were extracted 
using RNN and LSTM. The first and second-degree of audio features were trained 
using Mel frequency cepstral coefficients to diagnose mental state automatically. 
In [26], authors analyzed the time–frequency representation of audio signals using 
DL-based EmoAudioNet. High and low-level audio features were aggregated and 
processed using the CNN network to obtain classification scores for the identification 
of major depression disorders.

Clinical prediction of depression is performed using medical data such as EHR, 
and EER [4, 9–11, 25]. EEG signals record brain waves effectively which can be used 
for classifying depressed individuals from healthy. In this direction, authors extracted 
brain signals using generalized partial directed coherence and direct directed transfer 
function methods [9]. Each individual image was constructed from EEG signals and 
processed using five different DL models to automatically learn patterns from EEG. 
These models captured spatial and temporal features from the brain to diagnose 
major depressive disorder. Similarly, Sharma et al. [10] diagnosed depression by 
analyzing EEG signals using CNN and LSTM. CNN was used for preprocessing by 
windowing the EEG signals over time series and LSTM determines sequence learning 
by extracting local features. In [11], authors exploited CNN and LSTM to identify 
neurological disorders using EEG signals. Local features were extracted using CNN 
signals and LSTM to learn local characteristics and patterns in the EEG. LSTM used 
memory cells to remember important features and update feature weights during 
training to identify right and left hemispheres EEG signals for diagnosing clinical 
depression. On the other hand, clinical depression can also be predicted using high-
dimensional data from EHR clinical notes [4]. Bidirectional representation learning 
model with transformer architecture was exploited to model the five features namely, 
diagnoses, procedure codes, medications, demographics, and clinical data extracted 
from EHR. The model was pre-trained and fine-tuned to process temporal data for 
predicting the future possibilities of depression. Similarly, Bertl et al. [25] evaluated 
the real-time medical claim data and analyzed temporal properties using DL models 
with GRU decay. Explainability was introduced in the model by incorporating self-
attentional model for depression screening for better quality of life. 

Early depression signs can also be traced by analyzing social media using DL-
based algorithms [2, 27, 35, 38]. In this direction, authors analyzed textual social 
media data using LSTM and RNN [2]. To manage the model efficiency, two hidden 
layers in LSTM and two dense layers in RNN were used for predicting early signs of 
depression and suicidal tendencies. Also, one hot encoding and principal component 
analysis methods represented the depression symptoms and sentiments in social 
media data. In [27], authors utilized DL models for tracing the early signs of mental



82 4 Diagnosis and Prediction of Neurological Disorders Using Artificial …

Ta
bl
e 
4.
3 

D
L
-b
as
ed
 te
ch
ni
qu
es
 f
or
 p
re
di
ct
in
g 
va
ri
ou
s 
m
en
ta
l d

is
or
de
rs
 

R
ef
er
en
ce
s

D
at
as
et
 d
es
cr
ip
tio

n
M
od

el
 u
til
iz
ed
/ 

pr
op
os
ed
 

M
en
ta
l i
lln

es
s 
ty
pe

Pe
rf
or
m
an
ce
 m

ea
su
re
s

Su
m
m
ar
y 

Z
ha
ng

 e
t a
l. 
[6
]

• 
T
ra
in
in
g:
 1
4,
91
5 

(m
en
ta
l i
lln

es
s 

in
st
an
ce
s)
, 4
53
8 

(h
ea
lth

y 
in
st
an
ce
s)
 

• 
Te
st
: 2

90
 (
m
en
ta
l 

ill
ne
ss
 in

st
an
ce
s)
, 3
10

 
(h
ea
lth

y 
in
st
an
ce
s)
 

D
L
-M

IL
Se
ve
re
 m

en
ta
l i
lln

es
s 

in
cl
ud
in
g 
de
pr
es
si
on
, 

Sc
hi
zo
ph
re
ni
a,
 a
nx
ie
ty
, 

an
d 
ot
he
r 
di
so
rd
er
s 

A
U
C
, A

C
C
, S

E
N
, a
nd

 
SP

E
 

• 
U
til
iz
ed
 M

R
I 
sc
an
s 
to
 

pr
ed
ic
t s
ev
er
e 
m
en
ta
l 

ill
ne
ss
 

• 
So

ci
o-
de
m
og
ra
ph
ic
s 

su
ch
 a
s 
ge
nd
er
 a
nd
 a
ge
 

fo
r 
be
tte

r 
ge
ne
ra
liz

ab
ili
ty
 o
f 
th
e 

m
od
el
 

• 
A
ch
ie
ve
d 
th
e 
hi
gh
es
t 

A
C
C
 (
82
%
) 
on
 b
ot
h 

pr
im

ar
y 
an
d 
un
se
en
 

da
ta
se
ts
 

Jo
 a
nd
 K
w
ak
 [
7]

• 
E
D
A
IC
-W

O
Z
 d
at
as
et
 

• 
To

ta
l i
ns
ta
nc
es
 (
27
5)
, 

de
pr
es
si
on
 (
66
),
 

no
n-
de
pr
es
si
on
 (
20
9)
 

• 
D
ep
re
ss
io
n:
 T
ra
in
in
g 

(3
7)
, V

al
id
at
io
n 
(1
2)
, 

Te
st
 (
17
) 

• 
N
on
-d
ep
re
ss
io
n:
 

T
ra
in
in
g 
(1
26
),
 

V
al
id
at
io
n 
(4
4)
, T

es
t 

(3
9)
 

B
id
ir
ec
tio

na
l-
L
ST

M
 

an
d 
C
N
N
 

D
ep
re
ss
io
n

A
C
C
, F

1-
sc
or
e,
 P
R
, R

E
, 

an
d 
co
nf
us
io
n 
m
at
ri
x 

• 
C
om

bi
ne
d 
fe
at
ur
es
 

ex
tr
ac
te
d 
fr
om

 v
oi
ce
 

an
d 
da
ta
 to

 p
re
di
ct
 

de
pr
es
si
on
 

• 
B
et
te
r 
pe
rf
or
m
an
ce
 o
n 

vo
ic
e
 da
ta
 in

 
co
m
pa
ri
so
n 
to
 te
 xt

da
ta

• 
A
pp

lie
d 
da
ta
 

au
gm

en
ta
tio

n 
an
d 

to
ke
ni
za
tio

n 
as
 

pr
ep
ro
ce
ss
in
g 
st
ep
s 

• 
A
ch
ie
ve
d 
hi
gh

es
t A

C
C
 

(9
6.
67
%
) 
us
in
g 
fo
ur
 

st
re
am

 D
L
 m

od
el

(c
on
tin

ue
d)



4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare 83

Ta
bl
e
4.
3

(c
on
tin

ue
d)

R
ef
er
en
ce
s

D
at
as
et
de
sc
ri
pt
io
n

M
od

el
ut
ili
ze
d/

pr
op
os
ed

M
en
ta
li
lln

es
s
ty
pe

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

R
am

ír
ez
-C

if
ue
nt
es
 e
t a
l. 

[ 2
7]
 

• 
To

ta
l i
ns
ta
nc
es
 d
at
as
et
 

1:
 s
ui
ci
de
 (
70
75
),
 

de
pr
es
si
on
 (
30
15
),
 

al
co
ho
lis
m
 (
25
0)
, a
nd
 

ea
tin

g 
di
so
rd
er
s 
(7
84
) 

• 
To

ta
l i
ns
ta
nc
es
 d
at
as
et
 

2:
 m

en
ta
l d

is
or
de
rs
 

(1
1,
12
4)
, c
on
tr
ol
 

(2
0,
05
7)
 

D
L
-b
as
ed
 p
re
di
ct
iv
e 

m
od
el
 

D
ep
re
ss
io
n,
 e
at
in
g 

di
so
rd
er
s,
 s
ui
ci
da
l 

id
ea
tio

n,
 a
nd

 o
th
er
 

m
en
ta
l d

is
or
de
rs
 

A
C
C
, R

E
, a
nd
 F
1-
sc
or
e

• 
E
xp

lo
ite

d 
le
xi
co
n-
ba
se
d 
fe
at
ur
es
 

to
 c
ha
ra
ct
er
iz
e 
m
en
ta
l 

di
so
rd
er
s 
in
 R
ed
di
t 

po
st
s 

• 
A
na
ly
ze
d 
so
ci
al
 m

ed
ia
 

po
st
s 
to
 p
re
di
ct
 m

en
ta
l 

co
nd
iti
on
s 
co
ns
id
er
in
g 

th
e 
ps
yc
ho

lo
gi
ca
l r
is
k 

fa
ct
or
s 

• 
A
ch
ie
ve
d 
hi
gh

es
t A

C
C
 

(9
8.
40
%
) 
on
 b
as
el
in
e 

m
od
el
 w
ith

 B
oW

 
ap
pr
oa
ch
 

G
ho
sh
 e
t a
l. 
[3
5]

• 
M
ul
tip

le
 d
at
as
et
s 

• 
To

ta
l i
ns
ta
nc
es
: 1

0,
65
9 

• 
D
ep
re
ss
io
n:
 5
89
9 

• 
N
on
-d
ep
re
ss
io
n:
 4
74
9 

B
iG
R
U
 a
nd
 C
N
N

D
ep
re
ss
io
n,
 e
m
ot
io
n 

re
co
gn
iti
on
 

A
C
C
, F

1-
sc
or
e,
 a
nd
 

PC
C
 

• 
A
na
ly
ze
d 
Tw

itt
er
 u
se
r 

da
ta
 a
nd
 p
ro
fil
es
 f
or
 

pr
ed
ic
tin

g 
de
pr
es
si
on
 

• 
Im

pr
ov
ed
 m

od
el
 

pe
rf
or
m
an
ce
 u
si
ng
 

m
ul
ti-
m
od

al
 f
ea
tu
re
s 

• 
A
ch
ie
ve
d 
ov
er
al
l A

C
C
 

(7
0%

)

(c
on
tin

ue
d)



84 4 Diagnosis and Prediction of Neurological Disorders Using Artificial …

Ta
bl
e
4.
3

(c
on
tin

ue
d)

R
ef
er
en
ce
s

D
at
as
et
de
sc
ri
pt
io
n

M
od

el
ut
ili
ze
d/

pr
op
os
ed

M
en
ta
li
lln

es
s
ty
pe

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

B
er
tl 
et
 a
l. 
[2
5]

E
H
R
 d
at
a 
of
 8
12
,8
53
 

pa
tie

nt
s 

A
tte

nt
io
n-
ba
se
d 

G
R
U
 d
ec
ay
 m

od
el
 

D
ep
re
ss
io
n

A
U
C
, A

U
PR

C
, S

E
N
 a
nd

 
SP

E
 

• 
In
te
gr
at
ed
 a
tte

nt
io
na
l 

m
od
ul
e 
to
 e
ns
ur
e 

m
od

el
 e
xp

la
in
ab
ili
ty
 

• 
A
ch
ie
ve
d 
ov
er
al
l 

sc
or
es
 a
s 
A
U
C
 (
0.
99
),
 

A
U
PR

C
 (
0.
97
),
 S
E
N
 

(0
.9
4)
, a
nd
 S
PE

 (
0.
99
) 

A
m
an
at
 e
t a
l. 
[2
]

• 
Tw

ee
ts
-S
cr
ap
ed
 d
at
as
et
 

fr
om

 K
ag
gl
e 

• 
To

ta
l: 
4 
K
 tw

ee
ts
 

L
ST

M
 a
nd
 R
N
N

D
ep
re
ss
io
n

A
C
C
, P

R
, R

E
, 

F1
-M

ea
su
re
, C

on
fu
si
on
 

m
at
ri
x,
 a
nd
 s
up
po
rt
 

• 
E
xa
m
in
ed
 r
ob
us
t 

fe
at
ur
es
 u
si
ng
 th

e 
on
e-
ho
t m

et
ho
do
lo
gy
 

• 
St
em

m
in
g 
an
d 

le
m
m
at
iz
at
io
n 
al
on

g 
w
ith

 P
C
A
 a
nd
 o
ne
-h
ot
 

fo
r 
da
ta
se
t c
le
an
in
g 

an
d 
fe
at
ur
e 
ex
tr
ac
tio

n 
• 
A
ch
ie
ve
d 
ov
er
al
l A

C
C
 

(9
9%

) 

Sh
ar
m
a 
et
 a
l. 
[1
0]

E
E
G
 s
ig
na
l d

at
a 
fr
om

 th
e 

U
ni
ve
rs
ity

 o
f 
A
ri
zo
na
, 

U
SA

 

C
N
N
 +

 LS
T
M

D
ep
re
ss
io
n

A
C
C
, a
nd

 M
A
E

• 
U
til
iz
ed
 C
N
N
 f
or
 

te
m
po
ra
l l
ea
rn
in
g 
an
d 

L
ST

M
 f
or
 s
eq
ue
nc
e 

le
ar
ni
ng
 

• 
A
ut
om

at
ic
 le
ar
ni
ng

 o
f 

m
od
el
 w
ith

ou
t a
ny
 

fe
at
ur
e 
ex
tr
ac
tio

n 
• 
A
ch
ie
ve
d 
A
C
C
 

(9
9.
1%

) 
in
 4
5 
su
bj
ec
ts

(c
on
tin

ue
d)



4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare 85

Ta
bl
e
4.
3

(c
on
tin

ue
d)

R
ef
er
en
ce
s

D
at
as
et
de
sc
ri
pt
io
n

M
od

el
ut
ili
ze
d/

pr
op
os
ed

M
en
ta
li
lln

es
s
ty
pe

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

T
ho
du
pa
ra
m
bi
l e
t a
l. 
[1
1]
 
E
E
G
 r
ec
or
di
ng
s 
fr
om

 th
e 

U
ni
ve
rs
ity

 o
f 
N
ew

 
M
ex
ic
o 

C
N
N
, a
nd
 L
ST

M
D
ep
re
ss
io
n

A
C
C
, S

E
N
, a
nd
 S
PE

• 
A
ut
om

at
ed
 s
ys
te
m
 to

 
pr
ed
ic
t d

ep
re
ss
io
n 

ut
ili
zi
ng

 c
lin

ic
al
 d
at
a 

• 
E
xt
ra
ct
ed
 f
ea
tu
re
 u
si
ng

 
C
N
N
 a
nd
 m

od
el
 

le
ar
ni
ng
 u
si
ng
 L
ST

M
 

• 
A
ch
ie
ve
d 
A
C
C
 r
ig
ht
 

he
m
is
ph
er
e 
(9
9.
07
%
) 

an
d 
le
ft
 h
em

is
ph
er
e 

(9
8.
84
%
) 

O
th
m
an
i e
t a
l .
[2
6]

• 
R
E
C
O
L
A
 d
at
as
et
: 2

5 
au
di
o 
re
co
rd
in
gs
 (
A
vg
. 

du
ra
tio

n:
 5
 m

in
) 

•
 D
A
IC

-W
O
Z

 
de
pr
es
si
on

 d
at
as
et
: 

U
til
iz
ed
 1
82

 a
ud

io
 

re
co
rd
in
gs
 (
A
vg
. 

du
ra
tio

n:
 1
5 
m
in
)

D
L
-b
as
ed
 

E
m
oA

ud
io
N
et
 

D
ep
re
ss
io
n

A
C
C
, P

C
C
, R

M
SE

, 
co
nf
us
io
n 
m
at
ri
x,
 

F1
-s
co
re
 

• 
A
na
ly
ze
d 
sh
or
t-
tim

e 
sp
ec
tr
al
 a
na
ly
si
s 
to
 

pr
ed
ic
t e
m
ot
io
na
l 

di
m
en
si
on
s 

• 
E
xp

lo
ite

d 
tim

e–
fr
eq
ue
nc
y 

re
pr
es
en
ta
tio

n 
an
d 

sp
ec
tr
um

 o
f 
au
di
o 

si
gn
al
 

• 
A
ch
ie
ve
d 
A
C
C
 

(7
3.
25
%
) 
an
d 
F1

-s
co
re
 

(8
2%

)

(c
on
tin

ue
d)



86 4 Diagnosis and Prediction of Neurological Disorders Using Artificial …

Ta
bl
e
4.
3

(c
on
tin

ue
d)

R
ef
er
en
ce
s

D
at
as
et
de
sc
ri
pt
io
n

M
od

el
ut
ili
ze
d/

pr
op
os
ed

M
en
ta
li
lln

es
s
ty
pe

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

R
ej
ai
bi
 e
t a
l. 
[2
8]

D
A
IC
-W

O
Z
 d
ep
re
ss
io
n 

da
ta
se
t: 
U
til
iz
ed
 1
82

 
au
di
o 
re
co
rd
in
gs
 (
A
vg
. 

du
ra
tio

n:
 1
5 
m
in
) 

R
A
V
D
E
SS

: 1
44
0 
au
di
o 

re
co
rd
in
gs
 

A
V
i-
D
: 1

50
 a
ud
io
 

re
co
rd
in
gs
 

M
FC

C
-b
as
ed
 R
N
N
 

M
FC

C
-b
as
ed
 R
N
N
 

us
in
g 
T
L
 

D
ep
re
ss
io
n

A
C
C
, R

M
SE

, P
R
, R

E
, 

F1
-S
co
re
, a
nd
 

C
on
fu
si
on
 m

at
ri
x 

• 
W
ei
gh

tin
g 
st
ra
te
gy
 to

 
de
al
 w
ith

 im
ba
la
nc
ed
 

da
ta
se
ts
 

• 
G
en
de
r-
ba
se
d 

as
se
ss
m
en
t t
o 
ad
dr
es
s 

th
e 
ge
nd
er
 b
ia
s 
in
 th

e 
ev
al
ua
tio

n 
• 
A
ch
ie
ve
d 
av
g.
 A
C
C
 

(7
6.
27
%
),
 R
M
SE

 (
0.
4)
, 

an
d 
F1

-s
co
re
 (
46
%
) 
fo
r 

de
pr
es
si
on
 

To
to
 e
t a
l. 
[8
]

• 
15
 th

em
at
ic
 d
at
as
et
s 

ex
tr
ac
te
d 
fr
om

 
D
A
IC
-W

O
Z
 

• 
18
9 
au
di
o 
re
co
rd
in
gs
 

(A
vg
. d

ur
at
io
n:
 

7–
33
 m

in
) 

A
ud
iB
E
R
T
 

fr
am

ew
or
k 

D
ep
re
ss
io
n

F1
-s
co
re

• 
M
ul
ti-
m
od

al
 u
til
iz
in
g 

te
xt
 a
nd
 a
ud
io
 f
or
 

de
pr
es
si
on
 p
re
di
ct
io
n 

• 
D
at
a 
au
gm

en
ta
tio

n 
us
in
g 
du
al
 

se
lf
-a
tte

nt
io
n 

m
ec
ha
ni
sm

 
• 
A
ch
ie
ve
d 
F1

-s
co
re
 

(0
.9
2)

(c
on
tin

ue
d)



4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare 87

Ta
bl
e
4.
3

(c
on
tin

ue
d)

R
ef
er
en
ce
s

D
at
as
et
de
sc
ri
pt
io
n

M
od

el
ut
ili
ze
d/

pr
op
os
ed

M
en
ta
li
lln

es
s
ty
pe

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

Sa
ee
di
 e
t a
l. 
[9
]

E
E
G
 d
at
as
et
: d

ep
re
ss
io
n 

(3
3)
, n

on
-d
ep
re
ss
io
n 
(3
0)
 
1D

-C
N
N
, 2

D
-C
N
N
, 

L
ST

M
, 1

D
-C
N
N
 +

 
L
ST

M
, 2

d-
C
N
N
 +

 
L
ST

M
 

D
ep
re
ss
io
n

SP
E
, A

C
C
, F

1-
sc
or
e,
 P
R
 
• 
A
na
ly
ze
d 
E
E
G
 s
ig
na
l 

co
nn

ec
tiv

ity
 to

 th
e 

br
ai
n 
us
in
g 
G
PD

C
 a
nd
 

dD
T
F 

• 
16
 c
on

ne
ct
iv
ity

 
m
et
ho
ds
 to

 c
on
st
ru
ct
 

im
ag
es
 f
ro
m
 E
E
G
 

si
gn

al
s 
fo
r 
pr
ed
ic
tio

n 
• 
A
m
on
g 
al
l, 
1D

-C
N
N
 +

 
L
ST

M
 a
ch
ie
ve
d 
th
e 

be
st
 p
er
fo
rm

an
ce
 A
C
C
 

(9
9.
24
%
) 

M
en
g 
et
 a
l. 
[4
]

Pa
tie

nt
’s
 E
H
R
 d
at
as
et
 

su
ff
er
in
g 
fr
om

 c
ri
tic

al
 

di
se
as
es
 

B
id
ir
ec
tio

na
l D

L
 

tr
an
sf
or
m
er
 

ar
ch
ite

ct
ur
e 

D
ep
re
ss
io
n

R
O
C
A
U
C
, P

R
A
U
C

• 
Pr
e-
tr
ai
ni
ng
 a
nd
 

fin
et
un
in
g 
fo
r 
te
m
po
ra
l 

re
pr
es
en
ta
tio

n 
of
 

m
ul
tim

od
al
 E
H
R
 d
at
a 

• 
A
ch
ie
ve
d 
m
od

el
 

in
te
rp
re
ta
bi
lit
y 
us
in
g 

se
lf
-a
tte

nt
io
n 
w
ei
gh

ts
 

in
 E
H
R
 s
eq
ue
nc
es
 

• 
M
od

el
 p
re
di
ct
io
n 
ca
n 

su
pp
or
t c
lin

ic
al
 

ou
tc
om

es
 f
or
 

de
pr
es
si
on
 r
is
k 

pr
ed
ic
tio

n

(c
on
tin

ue
d)



88 4 Diagnosis and Prediction of Neurological Disorders Using Artificial …

Ta
bl
e
4.
3

(c
on
tin

ue
d)

R
ef
er
en
ce
s

D
at
as
et
de
sc
ri
pt
io
n

M
od

el
ut
ili
ze
d/

pr
op
os
ed

M
en
ta
li
lln

es
s
ty
pe

Pe
rf
or
m
an
ce

m
ea
su
re
s

Su
m
m
ar
y

Z
ha
ng

 e
t a
l. 
[3
8]

Se
lf
-c
re
at
ed
 T
w
itt
er
 

da
ta
se
t: 
de
pr
es
si
on

 
(2
57
5)
 

T
ra
ns
fo
rm

er
-b
as
ed
 

D
L
 m

od
el
 u
si
ng
 

B
E
R
T,

 X
L
N
et
, a
nd

 
R
oB

E
R
 Ta

D
ep
re
ss
io
n

A
C
C
, F

1-
sc
or
e,
 A
U
C
, 

PR
, R

E
 

• 
A
na
ly
ze
d 
de
pr
es
si
on
 

le
ve
ls
 in

 d
if
fe
re
nt
 

pe
op

le
 o
n 
Tw

itt
er
 

•
 In
te
gr
at
ed

 
ps
yc
ho
lo
gi
ca
l t
ex
t 

fe
at
ur
es
 a
nd

 
de
m
og

ra
ph

ic
 d
et
ai
ls
 

fo
r 
id
en
tif
yi
ng
 

de
pr
es
si
on
 tr
en
ds

• 
A
ch
ie
ve
d 
A
C
C
 

(7
8.
9%

) 
on
 th

e 
co
lle

ct
ed
 d
at
as
et
 

C
N
N
: C

on
vo
lu
tio

na
l n

eu
ra
l n

et
w
or
k,
 L
ST

M
: L

on
g-
sh
or
t 
te
rm

 m
em

or
y,
 R
N
N
: R

ec
ur
re
nt
 n
eu
ra
l n

et
w
or
k,
 A
C
C
: A

cc
ur
ac
y,
 P
R
: P

re
ci
si
on
, R

E
: R

ec
al
l, 
R
M
SE

: 
R
oo
t m

ea
n 
sq
ua
re
 e
rr
or
, E

D
A
IC
-W

O
Z
: E

xt
en
de
d 
D
is
tr
es
s 
A
na
ly
si
s 
In
te
rv
ie
w
 C
or
pu
s-
W
iz
ar
d 
of
 O
z,
 B
oW

: B
ag
-o
f-
w
or
ds
, E

H
R
s:
 E
le
ct
ro
ni
c 
he
al
th
 re
co
rd
, P

C
C
: 

Pe
ar
so
n’
s c
oe
ffi
ci
en
t c
or
re
la
tio

n,
 D
L
: D

ee
p 
le
ar
ni
ng
, M

IL
: M

ul
tip

le
 in
st
an
ce
 le
ar
ni
ng
, A

U
PR

C
: A

re
a 
un
de
r p
re
ci
si
on
-r
ec
al
l c
ur
ve
, E

E
G
: E

le
ct
ro
en
ce
ph
al
og
ra
ph
y,
 

M
A
E
: M

ea
n 
ab
so
lu
te
 e
rr
or
, P
C
A
: P

ri
nc
ip
al
 c
om

po
ne
nt
 a
na
ly
si
s,
 M

FC
C
: M

el
 F
re
qu

en
cy
 C
ep
st
ra
l C

oe
ffi
ci
en
ts
, T

L
: T

ra
ns
fe
r l
ea
rn
in
g,
 G
PD

C
: G

en
er
al
iz
ed
 P
ar
tia

l 
D
ir
ec
te
d 
C
oh

er
en
ce
, d

D
T
F:
 D
ir
ec
t d

ir
ec
te
d 
tr
an
sf
er
 f
un

ct
io
n



4.3 Artificial Intelligence-Based Models for Predicting Mental Healthcare 89

disorders in social media posts. Cosine similarity and visual approach were defined 
to identify the variations in the social media data for multi-class classification. Zhang 
et al. [38] created large datasets containing depressed users and their past tweets. This 
dataset was processed using three DL-based transformers investigating psychological 
text features and sociodemographics to monitor group-level and population-level 
depression trends. 

To summarize, DL-based have reported enhanced accuracy and effectiveness in 
detecting mental disorders by monitoring clinical data and social media data. Inte-
gration of speech and text information in the form of clinical notes has shown better 
efficiency. However, the model’s generalizability in predicting future depression 
could not be assured due to limited training data availability. Also, EER signals have 
enough potential to represent brain waves and determine early signs of depression. 
The complex nature of these signals demands pre-processing steps which impacts 
the computational efficiency of the model. In order to reduce the model complica-
tions, social media data is also examined using a recent transformer-based DL model 
for predicting users suffering from mental illness. The prediction accuracy of these 
models is highly dependent on the truthfulness of the data shared by users on social 
media. 

4.3.3 Hybrid Models for Predicting Mental Disorders 

To address the limitations of ML and DL-based models, hybrid models are investi-
gated for predicting mental disorders [1, 3, 32]. These models integrate the benefits 
of both ML and DL models along with NLP and supervised and unsupervised algo-
rithms to predict various mental disorders [30, 33, 34]. These models also examined 
clinical data and social media data for depicting mental illness. Table 4.4 tabulates 
the salient features of the representative work utilizing hybrid predictive models for 
various mental disorders.

Authors investigated the signs of depression in EHR data collected from Mercy 
Care by integrating NLP, LSTM, RF, and GBT [5]. EHR data was annotated using 
NLP services such as MedCAT and BioYODIE. Feature importance was employed 
to identify the sensitive features for improving the computational complexity of the 
system. On the other hand, Sarkar et al. [34] analyzed EEG clinical data using DL 
models and supervised ML models for tracking depression. In DL-model LSTM with 
RNN outperformed the other algorithms but in ML techniques SVM and LR were 
superior in detecting depression in EEG brain waves. In [29], authors investigated the 
speech samples collected globally by performing sentiment analysis to identify the 
traces of depression, anxiety, and loneliness. The patterns in speech were extracted by 
DL-based neural network and clustering technique to predict the patient’s behavior 
and influence of depression. 

To predict depression, anxiety, and suicidal ideation using social media, Fatima 
et al. [3] integrated message-level sentiment analysis with three DL models for robust 
feature extraction from social media data. Four classifiers were trained to detect the
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early signs of depression from an individual’s posts. However, authors attempted to 
differentiate between depression and suicidal ideations by training multiple models 
using the social media data and label correction method to reduce the impact of noise 
in online content [32]. Label correction methods utilized unsupervised clustering to 
efficiently use large-scale web datasets for better performance. Authors exploited 
CNN and LSTM to predict the behavior of an individual by gathering data from 
different social media posts and profiles [1]. Hybrid feature extraction techniques 
such as Word2Vec and TF-IDF (term frequency-inverse document frequency) used 
for selecting optimal features for detecting depression. However, authors extracted 
robust features using the GloVe method to capture the semantics of tweets from 
Twitter data [33]. Self-attentional DL model analyzed and classified the context to 
predict the mental health of the individual. The performance of the model was tested 
on a randomly selected small set of unseen datasets. On the other hand, Ansari 
et al. [30] compared ensembled and hybrid approaches using text classifiers for 
the automatic detection of depression. Features were extracted using symbolic and 
subsymbolic models. These results were passed to a LR module to classify the text. 
Simultaneously, word embeddings were processed using Attentional LSTM and a 
linear classifier. The results of LR and linear classifier were averaged to obtain 
the final results for predicting the major depressive disorders on public depression 
datasets. 

To summarize, hybrid approaches integrated NLP, ML, and DL models to build 
a robust model for predicting depressive disorder symptoms. Initially, hybrid tech-
niques performed sentiment analysis on the word embedding gathered either from 
clinical data or social media data. After this, the data was processed using a combina-
tion of ML and DL algorithms to extract the outcomes efficiently. The hybrid models 
also tested the performance of unseen datasets selected randomly which ensures the 
generalizability and realistic applicability of the model. 

4.4 Artificial Intelligence-Based Solutions for Students 
with Special Needs 

Mental disorders are not only prevalent in adults but also its dominance can also be 
visualized in middle-aged infants and teenage students [43]. Students suffering from 
mental disability and other psychological disorders have special needs that need to 
be addressed to improve their teaching–learning experience. Students suffering from 
neurological disorders not only affect their health but also their families and society. 
It is essential to recognize the early signs of mental illness in students and treat them 
as early as possible. For this, AI has provided many tools and applications that not 
only accommodate the needs of these special students but also generate interest by 
enhancing their cognitive learning [44]. In addition, AI has incorporated imparting 
personalized learning and education to students who are under stress and depression 
due to their bad academic performance and family pressure. The next section will
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discuss various AI-based optimization methods and tools that not only helpful in 
predicting the early signs of neurological disorders but also provide solutions to 
address them. 

4.4.1 Artificial Intelligence for Optimizing Mental Disorders 
in Students 

Students are suffering from mental health problems that include stress, anxiety, 
suicidal thoughts, and depression disorders. These problems are prevalent in 
students as they are under pressure to perform well in their academics. In order 
to address neurological disorders in students many AI-based tools and suggestions 
are recommended by various researchers [45]. 

AI has provided many tools to analyze the activities of students to improve their 
attention and focus on their work. These tools help reduce the stress and depression 
in students that may occur due to fear of non-performance in their academics. In this 
direction, authors proposed child activity sensing and training tool comprised of 42 
unique features to analyze the physical and physiological activities of the students in 
real time [46]. This tool improves the student’s focus by assisting them in real-time 
with their various academic activities. AI-based wearable vibrating watch known as 
WatchMinder was proposed by [47]. This device collected the activity and behavior 
of the wearer and periodically sends reminders to refocus on work. In [48], authors 
developed an AI-based anxiety scale to measure the anxiety levels in students to 
motivate them to learn. 

To reduce stress, anxiety, and depression in students, a personalized learning 
experience is recommended. For this, authors explored learning areas such as 
reading, writing, spelling, and computing [45]. To inculcate reading comprehension, 
automatic storytelling apps, visual perception, and touching letters were provided. 
Supportive classroom environment to improve the physical structure of the learning. 
Daily teaching and learning schedules were defined innovatively to accommodate 
the needs of the students for better response. The balance between educational and 
extracurricular activities must be managed to improve the learning outcomes. AI 
therapies and supportive education for individualized learning and improving social 
skills in students suffering from mental disorders. 

4.4.2 Artificial Intelligence-Based Robots for Special 
Students 

AI-based robots such as chatbots, voicebots, and many others are recommended 
to address the needs the special students for their mental health [45]. These tools
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simplify the task and generate interest so that students would not feel depressed and 
consider learning as a burden. 

In [49], authors suggested chatbot therapy to provide self-help for depressive 
students. The text contents were trained in the chatbot which is approved by profes-
sional therapists. The prewritten templates and questionaries were fed into the chat-
bots which get activated based on individual responses. During the therapy session, 
the chatbot differentiated among the emotions, thoughts, reactions, and behavior of 
the user. Based on the outcome, chatbot not only determined the level of negative 
feelings but also told practical ways to reduce negative feelings and overcome stress. 

Arshad et al. [50] reviewed a robot for understanding the mathematics place 
value system named Mindstorms EV3 using LEGO to improve classroom learning 
in autistic students. This system interacted with students to enhance the interest, 
attention, focus, and personalized engagement of the students with special needs. 
Feedback on teaching and learning was also gathered by interviewing the teachers 
teaching the special needs students. It has been observed that this has improved the 
cognitive learning abilities of the students by generating interest and encouraging 
them to participate more in classroom activities. 

In [51], authors discussed audio-based robots that can understand the emotions of 
autistic students and can support them in creating an interactive teaching and learning 
environment. These robots can adapt themselves in accordance with the change in 
emotion of the student such as crying, laughing, and other mental states. Speech 
data of the students were analyzed and processed based on the captured emotion to 
improve their engagement in various classroom activities and improve the quality of 
education. 

4.5 Analysis of Mental Health During COVID-19 Pandemic 

During the pandemic situation of COVID-19, people were known to suffer from 
depression, anxiety, and loneliness due to various preventive measures such as lock-
downs and isolation. The pandemic restriction prevented travel, and people were 
forced to work from home. This pandemic has recorded a change in the psycho-
logical behavior of the people and led to severe mental disorders and mental health 
destabilization [29]. 

In order to analyze the traces of mental depression in Twitter social media users 
during the COVID-19 pandemic, authors gathered tweets from Twitter using an 
expression-based search method [38]. A fusion classifier was created to integrate 
the text features with demographic information to determine the depression features. 
The model had investigated the group-level and population-level depression trends 
in the generation during the pandemic. This non-invasive, and non-clinical data-
based method can not only predict depression levels in different age groups but also 
generate awareness to prevent its propagation. 

On the other hand, authors proposed a questionnaire set based on Hamilton tools 
designed in consultation with the psychiatrist to investigate depression in people
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during the COVID-19 pandemic [37]. The responses from humans were recorded 
and examined through various ML-based approaches to identify the depression trends 
in humans. The created questionnaire set was diversified consisting of both positive 
and negative questions to identify depression at an early stage. 

In [29], authors validated speech signals and performed sentimental analysis to 
identify depression in people during the global lockdown in the whole world. The 
mental health of the people is severely affected due to isolation situations from the rest 
of the world. The behavioral patterns in depression-influenced people are analyzed 
in recorded speech data using the DL-based method. Cluster validation and signal 
segmentation techniques are utilized to evaluate the speech signal for the presence 
of depression and other mental disorders. 

One of the potential measures recommended to prevent the spread of COVID-
19 was social distancing. Social distancing has a potential negative impact on the 
mental health of children as well as adolescents [52]. The risk of child abuse and 
exploitation increased as families were isolated at home and parents were under stress 
either due to the loss of their jobs or work-from-home pressure. The socio-emotional 
development of both parents and children was impacted and raised concerns about 
mental health and behavioral disorders. 

To determine the impact of COVID-19 on people’s mental health, authors 
reviewed the various psychiatric symptoms to determine the direct and indirect 
impact of the pandemic on people [53]. It has been analyzed that the pandemic has 
worsened the situation in people who already have pre-existing depression symp-
toms such as anxiety, sleeping irregularities, and psychological disorders. There are 
many other sociodemographic factors such as living status, education, job-related 
factors, and gender are reported which indirectly have contributed to people’s mental 
disorders. 

4.6 Summary 

In this chapter, we have reviewed clinical as well as social information for the diag-
nosis of mental health. Clinical diagnosis of mental disorders is based on the unstruc-
tured as well-structured information gathered from the patients. Unstructured infor-
mation includes textual information such as EHR data and clinical notes containing 
the patient’s medical history. Structured data utilizes imaging data such as MRI and 
signaling data such as EER for predicting disorders related to mental health. Clin-
ical diagnosis of depression, anxiety, and suicidal ideation requires medical data as 
well as discussion with the psychiatrist. On the other hand, Diagnosis using social 
media is based on textual information captured from various social networking sites 
such as Facebook, Reedit, and Twitter. This information is critical and useful in 
providing accurate prediction based on the data collected from user’s profiles, posts, 
and tweets. Algorithms based on ML and DL techniques can process this data to 
predict mental disorders automatically. These predictive models can analyze the
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psychological disorder symptoms efficiently so that treatment can be started at an 
early stage. 

Students suffering from depression affect not only their personal life but also 
their studies. These children are not able to concentrate, focus, and be involved with 
other normal students. Their need is different and demands personalized teaching to 
improve their classroom learning. AI has provided many tools in terms of chatbots, 
robots, and apps so that classroom teaching can be improved for such students. 
AI has also provided monitoring tools that can record the daily activities of these 
students to provide them better teaching–learning experience. Also, COVID-19 has 
impacted people of all age groups including children, adults, and senior citizens. 
It has been analyzed that people are suffering from major depressive orders during 
COVID-19. The various pandemic restrictions such as isolation, social distancing, 
and lockdowns worsen the conditions in the people who already were suffering from 
any other depressive disorder. The depression trends are monitored in the patients 
using recent algorithms to predict mental health. 
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Chapter 5 
Diagnosis and Prediction 
of Cardiovascular Disorder Using 
Artificial Intelligence 

Abstract Cardiovascular disorder (CVD) is one of the leading diseases which has 
a high mortality rate worldwide. Atherosclerosis is a condition which is a major 
cause of CVD and occurs due to the accumulation of plaque and calcium in the 
coronary arteries vessels. Intervascular ultrasound (IVUS) is a diagnostic technique 
that provides artery vessel imaging. To identify the severing of calcification and 
plaque in artery vessels, it is necessary to segment the IVUS imaging into lumen 
and media which demands specialized skills. For accurate diagnosis and prognosis 
of CVD in a patient, AI has provided many predictive algorithms which segment the 
IVUS imaging effectively. In this chapter, we will review the various deep-learning 
techniques exploited for IVUS imaging segmentation. We will also highlight the 
limitation of IVUS imaging that reduces the accuracy and effectiveness of CVD 
prediction. 

Keywords Artificial intelligence (AI) · Intervascular Ultrasound · Percutaneous 
coronary intervention · Coronary angiography computed tomography ·
Angiography · Risk assessment 

5.1 Introduction 

Cardiovascular disorder (CVD) causes coronary artery diseases that occur due to an 
insufficient supply of oxygen to the human heart. Atheromatous plaques accumulated 
in the coronary arteries narrow their lumen area and hence, reduce the blood flow to 
the heart [1, 2]. Plaque ruptures the blood vessels and impacts the cardiac muscles 
which leads to heart attack/heart failure. The components of atheromatous plaques 
are examined to determine the severity using a technique known as percutaneous 
coronary intervention (PCI) [3]. In this, intervascular ultrasound (IVUS) is used as a 
pre-intervention invasive technique to analyze coronary arteries, vessel regions, and 
lesions to assess the impact of plaque and extend appropriate treatment to prevent 
casualty.
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Early detection of CVD in a patient not only enhances the treatment success rate 
but also reduces the risk of heart failure in patients. IVUS-guided PCI is considered 
to be the superior technique in the detection of atheromatous plaque, and stenosis in 
lesion vessels of the patients [4]. Apart from IVUS, other invasive techniques such as 
OCT (Optical coherence tomography), and NIRS (near-infrared spectroscopic) tech-
niques can be used for examining the ruptured coronary arteries. Alternatively, non-
invasive techniques such as stress ECG (Echocardiography), cardiac MRI (Magnetic 
resonance imaging), and CCTA (coronary angiography computed tomography) are 
also popular among cardiologists for prediction of CVD risk. Among these non-
invasive techniques, CCTA is a gold standard and widely preferred by cardiologists 
for the identification of calcified, non-calcified, and mixed attenuation plaque in 
patients suffering from CVD [5, 6]. CCTA images provide geometrical informa-
tion on coronary arteries which requires further interpretation and analysis from the 
expert radiologist to estimate the stenosis severity. This process is time-consuming 
and non-very reliable as the outcomes from different experts vary in terms of diag-
nosis and interpretation [7]. On the other hand, IVUS imaging is more accurate in 
terms of the prediction of plaque from complex lesions of coronary arteries. 

IVUS imaging is quite complex and requires specialized skills and knowledge 
for interpretation and analysis. With the advent of technology, artificial intelligence 
(AI) has shown significant improvement and efficiency in the analysis of image 
processing [8, 9], education system [10, 11], tourism [12], and medical imaging 
[13–15]. AI with machine learning (ML) [4, 16, 17] and deep learning (DL) [18– 
20] based prediction algorithms have simplified the IVUS imaging segmentation 
containing complicated lesions into various categories of calcification. Also, the 
lumen and media segmentation are highly desirable in the complex IVUS images for 
evaluation of the degree of calcification. The evaluation of calcification in the target 
lumen area and media in IVUS images is crucial to optimize the stent implementation 
for accurate outcomes during PCI procedures. AI with its feature extraction and 
selection capabilities can segment the lumen-intima (LI) and media-adventitia (MA) 
border from the coronary arteries wall automatically. 

Generally, the non-invasive technique of CCTA provides elaborated imaging of 
the coronary arteries, and CTA images can be processed for predicting the risk of 
stenosis in coronary vessel boundaries [21]. CTA images can be manually segmented 
by radiologists and are time-consuming. However, CTA images are quite complex and 
require specialized skills for their interpretation for predicting CVD risk. Segmenting 
CTA images for visualization of stenosis in coronary vessels is highly dependent on 
the expert’s skills and may introduce selection and evaluation errors. To resolve this, 
DL-based methods are extensively explored for segmenting CTA images and have 
shown superior accuracy [22, 23]. These methods qualify for providing automatic, 
accurate, and faster segmentation of coronary arteries. However, prediction of CVD 
risk using IVUS imaging is highly preferred by cardiologists as it provides a clear 
view of coronary arteries for complex lesions along with identification of vulnerable 
plaque. 

Recently, several techniques and methods have been proposed for the automatic 
segmentation of the IVUS images for the identification of various categories of
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plaque. These techniques have extracted handcrafted features such as texture [4], 
artificial neural networks (ANN) [16], and convolutional networks (CNN) [18]  are  
quite popular. Particularly UNet-based DL algorithms have shown more accurate 
outcomes and prevent errors in the prediction of calcified plaque from IVUS images 
[1, 3, 24, 25]. These prediction algorithms can typically segment calcified, non-
calcified, and mixed attenuation plaques from the IVUS images. Fibrous and fibro-
fatty tissue can also be segmented from IVUS images to analyze the correlation 
between calcium and atherosclerosis [26]. 

The key objectives of this chapter are as follows:

• The IVUS imaging procedure is elaborated along with its methods, types, and 
limitations to gather clinical imaging data for further investigation.

• Various ML and DL-based prediction algorithms are reviewed, and salient features 
are gathered which ensure the automatic prediction of calcified, non-calcified, 
attenuated, and mixed attenuated plaque from the IVUS images.

• Apart from IVUS imaging, details about other imaging techniques such as CTCA 
are also highlighted to compare for accuracy and efficiency. 

The rest of the chapter is organized as follows. Section 5.2 elaborates on the key 
procedure technique that involves gathering clinical data using the IVUS technique. 
The details about AI-based techniques for automatic segmentation of IVUS imaging 
to analyze the CVD risk are categorized into ML-based and DL-based techniques 
and are highlighted in Sect. 5.3. Section 5.4 details the benefits and limitations of the 
CTCA technique for CVD risk prediction in comparison to IVUS imaging. Lastly, 
the concluding remarks and future directions are sketched in Sect. 5.5. 

5.2 IVUS Imaging Data Acquisition 

IVUS images are 360-degree cross-sectional visualizations of coronary arteries. 
IVUS images can be utilized to analyze lumen and vessel morphology such as shapes, 
borders, and areas. These images can also be examined for various types of plaque and 
their composition. Images can also be useful in decision-making for CVD diseases 
in atherosclerosis and post-surgery examination such as stent underexpansion and 
stenosis. Figure 5.1 illustrates (a) the IVUS image in which (b) media-adventitia 
(MA) border, (c) lumen area, and (d) calcified plaque are manually annotated and 
highlighted.

Basically, IVUS generates HD resolution gray-scale images from the ultrasound 
(USd) signals reflected by the coronary arteries structure. Coronary arteries can 
be divided into three parts namely, the innermost part as intima, the middle layer as 
media, and the outermost layer as adventitia. Atherosclerotic plaque is less echogenic 
and is accumulated in the intima layer of coronary arteries. In comparison to the inner 
layer, the adventitia layer (outer layer) is highly echo-reflective. The media layer 
contains smooth tissues and hence, does not reflect USd signal and appears dark in 
the IVUS images. Also, the atherosclerotic plaque on the inner layer is moderately
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Fig. 5.1 IVUS images with manual annotations as a original gray-scale image b MA layer region 
c lumen region d calcified tissue localization [18]

echogenic in nature. This difference in properties of the three layers of coronary 
arteries and the plaque enables identification and segmentation easily. 

5.2.1 Description of Catheter for Capturing IVUS Images 

IVUS catheter is a device used for collecting images from coronary arteries. It is 
a thin and flexible tube-like structure with a small transducer mounted on it. Like 
other USd imaging, one end of the catheter is connected to a device that converts the 
reflected USd signals and displays real-time images of the coronary vessels on the 
screen. Initially, the IVUS catheter is fed over a guidewire guided by angiography to 
the region of interest (ROI). IVUS transducer collects the images either distal to ROI 
and then pulled back through the stenosis region or directed placed at ROI. IVUS 
images are captured with an automated pullback speed. 60 images/mm at 30 fps are 
acquired by the IVUS device with the probe withdrawn at a fixed speed of 0.5 mm/ 
sec. The pullback operation can either be automated or manual. Manual pullback is
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Fig. 5.2 Description of IVUS catheter fed over a guidewire [27] 

more popular as it allows the observer to concentrate more on the target regions of 
the vessels. Figure 5.2 represents the catheter fed over a guidewire. 

There exist many commercial catheter manufacturers for capturing IVUS images 
[27]. IVUS imaging data can be acquired by various equipment at multiple frequen-
cies namely, 20, 50, and 40 MHz. Boston Scientific Corporation, Philips Volcano, and 
Terumo are a few popular manufacturers providing a wide range of catheters for IVUS 
imaging. OptiCross catheter with the rotational transducer at a variable frequency of 
15, 30, 40, and 60 MHz is manufactured by Boston Scientific. EagleEye, Revolution, 
and Refinity catheters are manufactured by Philips Volcano. These devices work on 
transducer frequencies of 20 and 45 MHz with a phased array and rotational trans-
ducer. Terumo manufactures catheters with rotational transducers which work at 40 
and 60 MHz frequencies known as View IT, AltaView, AnteOwl WR, Navifocus 
WR, and Intrafocus WR. 

5.2.2 Quality Assessment for IVUS Images 

For accurate and efficient outcomes from the IVUS images, it is necessary to assess 
the quality of the gray-scale images captured by the IVUS device. IVUS image 
quality can be evaluated by considering spatial resolution, imaging sensitivity, and 
contrast [28]. 

The spatial resolution of an USd image is computed as the minimum distance 
between two neighboring and differentiated features. The spatial resolution is 
inversely proportional to the computed distance. For an image with a lesser distance, 
spatial resolution is high. Spatial resolution is categorized as axial resolution and 
lateral resolution for an USd image. Axial resolution (νax) measures the depth reso-
lution and is defined as the capacity to differentiate close neighboring features along 
the USd beam axis. νax can be computed using Eq. (5.1).
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νax = λ 
2β 

(5.1) 

where λ is the wavelength computing using the speed of sound (c) and transducer 
frequency (τ)  a  s c 

τ and β is the transducer fractional bandwidth (−6  dB).  For  USd  
transducer with 20–50 MHz frequency, νax ranges from 70 to 200 µm. 

Lateral resolution (υL) is the capability measure to differentiate between neigh-
boring features in the perpendicular direction of the USd beam. It is computed using 
Eq. (5.2). 

υL = λ ̇φ (5.2)

where λ is the transducer wavelength and φ̇ defines the ratio of focal length to 
the aperture size of the USd image. Natural focal length φ̇n is computed for an 
unfocused transducer using Eq. (5.3). 

φ̇n = D
2 
t 

4λ 
(5.3) 

where Dt is the USd transducer diameter. For USd transducers with 20–50 MHz 
frequency, lateral resolution (υL) ranges from 200 to 250 µm. 

Temporal resolution (υ tp) in an USd image represents the capability to differentiate 
between instantaneous events of rapidly moving structures. During a cardiac cycle, 
it is defined as the time from the starting of one frame to the next. υ tp is improved 
by reducing penetration depth, focal points and scan lines/frame. This will allow the 
USd signal to travel a small distance, prevent scan line duplication, and narrow the 
size of frames. If φN is the number of focal points, Dp is penetration depth and SL is 
the number of scan lines, then, υ tp is computed using Eq. (5.4). 

υ tp = 154000 

2 × φN × Dp × SL (5.4) 

The contrast of an IVUS image (Ic) determines the distinguishing capability of 
the target feature from the nearby tissues. In IVUS images, it is computed from the 
difference in impedances between the target (T ) and the background (B) regions. Ic 
is a vital parameter for features that are prominent against background areas. It is 
calculated using Eq. (5.5). 

Ic = |δT − δB| 
μ2 
T −  −μ2 

B 

(5.5)

where δT and μT are the acoustic signal magnitude and S.D. (Standard deviation) 
in the target region. δB and μB are acoustic signal magnitudes and S.D. for the 
background.
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The sensitivity parameter is used to detect the USd echo in the presence of back-
ground noise. The acoustic attenuation of the USd signal increases due to scattering 
and abortion which decreases the signal-to-noise ratio (ηSNR). ηSNR is computed using 
Eq. (5.6). 

ηSNR(dB) = 20 log10 
VTi s

Vnoi 
(5.6) 

where VTis and Vnoi are acoustic signals from the target echogenic region and 
background region, respectively. 

5.3 Artificial Intelligence for Predicting Risk 
of Cardiovascular Disorder 

IVUS images provide lumen information, plaque categorization, and damaged 
vessels effectively. This information assists in the early diagnosis of cardiological 
disorder and prevents stroke/heart failure in patients suffering from coronary heart 
diseases [17, 29]. However, IVUS images are quite complex and require special-
ized skills to detect impacted lumen border, extent of calcification, and degree of 
atherosclerosis. In addition, the number of frames in an IVUS sequence for a single 
patient is huge and hence, requires plenty of time for accurate analysis and diagnosis 
so that proper treatment and advice can be extended to the patients [2, 30]. For accu-
rate, and faster detection of the severity of coronary artery disease in IVUS images, AI 
has provided a lot of ML and DL-based prediction algorithms. These algorithms not 
only provide automatic and faster segmentation of IVUS images but also visualize 
the morphological features of plaque which help in the identification of their adverse 
impact on coronary arteries. In this section, we have categorized the various AI-based 
CVD risk prediction algorithms into two categories namely, ML-based prediction 
algorithms [31–34] and DL-based prediction algorithms [3, 35–37] for IVUS image 
segmentation. Tables 5.1 and 5.2 highlight the salient features and compare the ML 
and DL-based prediction methods for IVUS segmentation, respectively. 

Table 5.1 Salient features of ML and DL-based IVUS segmentation algorithms 

SN Attributes ML-based algorithms DL-based algorithms 

1 Training data availability Low Limited 

2 Feature extraction Manual Automatic or manually 

3 Feature selection ✗ ✓ 
4 Computational complexity Relatively less High 

5 Performance Moderate High 

6 Statistical measure Limited Large 

7 Dataset augmentation ✗ ✓
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Table 5.2 Comparison of ML and DL-based IVUS segmentation algorithms 

SN Attributes ML-based algorithms DL-based algorithms 

1 Generalizability ✗ ✗ 
2 Model explainability ✗ ✗ 
3 Risk-of-Bias ✓ ✓ 
4 Data classification ✓ ✗ 
5 Unseen datasets ✗ ✗ 
6 Dataset processing ✗ ✓ 
7 Loss function ✗ ✓ 
8 Limitations Trained on limited datasets Trained on variable datasets 

5.3.1 Machine Learning-Based Algorithms for IVUS Image 
Segmentation 

A lot of ML-based algorithms such as Random forest (RF) [38–40], k-nearest neigh-
bour (KNN) [30], Feedforward neural network (FNN) [38], Support vector machine 
(SVM) [39], Decision tree (DT) [41], Bagged tree (BT) [41] and many other [32, 34, 
42] are proposed for feature-based classification and segmentation of IVUS images 
for CVD risk prediction. Table 5.3 tabulates the salient features of ML-based IVUS 
image segmentation techniques.

Generally, multiple features are extracted and selected from grayscale IVUS 
images to classify the vulnerable plaque tissues into calcified, attenuated, mixed 
attenuated, fatty, and fibrous fatty along with lumen and media borders. In this direc-
tion, Yang et al. [29] proposed a regression network based on coupled contour to 
resample the lumen and EEL in IVUS images. The anatomical relationship between 
the lumen and EEL was reconstructed to reduce false prediction. The processing 
speed of the method was quite fast due to the elimination of post processing step and 
the reduction in parameters in the decoder. On the other hand, authors proposed a 
graph-based segmentation technique to segment the lumen and EEL from the coro-
nary vessel surface in IVUS images [32]. The method combined automated segmen-
tation and computer-aided refinement to deal with calcification, shadow, and imaging 
artifacts. In [39], authors evaluated six ML-based algorithms for the classification 
of lesions with fivefold cross-validation. The algorithm performance was measured 
by defining thresholds for maximal accuracies and quality by Matthew’s correlation 
coefficients. 

To segment arterial walls for morphological structures such as bifurcations, 
shadows, echogenic plaques, and normal, features are extracted from the various 
IVUS images. For this, authors generated a 22-D feature vector for each column 
of the IVUS image to deal with the multi-classification of various morphological 
structures [40]. The classification accuracy was enhanced by assessing the feature 
importance using the RF algorithm. Similarly, authors extracted multiple features 
from the IVUS images and employed four ML classifiers to segment the calcified
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plaque and the normal [41]. An efficient feature selection strategy was deployed to 
minimize misclassification and enhance accuracy. Rezaei et al. [30] proposed a hybrid 
model by combining KNN and Fuzzy C-means (FCM) for automatic and accurate 
segmentation of VH-IVUS (Virtual histology IVUS) images. The color feature was 
extracted along with pixel clustering, cluster labeling, and outlier removal. Multiple 
algorithms were also exploited for robust feature extraction such as closed luminal 
border tracing, open lumen border tracing, confluent components, NC layering, and 
plaque burden assessment for classifying plaque from luminal border efficiently. 

In another line of research, ML algorithms such as Gradient boosting framework 
(GBF), Regression tree building (RTB), Convolutional kernel learning (CKL), sparse 
coding, and dictionary learning were also proposed for automatic segmentation of 
lumen border. In [42], authors utilized a gradient boosting framework along with its 
quadratic approximation to generate discriminative boundaries for lumen segmenta-
tion. Tong et al. [2] proposed dictionary-based IVUS image segmentation utilizing 
sparse coding and kernel dictionary. The dictionary consisted of positive and negative 
tissue samples to reduce the impact of artifacts and shadowed for better segmenta-
tion results. Also, linear discrimination of pixels in ROI was done using kernel 
cluster algorithms to improve detection quality during morphological operations. 
On the other hand, authors exploited multi-frame CNN to segment lumen boundary 
automatically in IVUS images. Initially, the minimum lumen area and stenosis area 
percentage were used for making decisions for lumen boundary segmentation. After 
this, it was subjected to the Gaussian process regression stage for further refinement. 
The automated gating and regression stage improved the effectiveness and accuracy 
of the method. 

To summarize, ML-based segmentation algorithms utilized methods along with 
features-based classifiers to improve the accuracy and effectiveness of the method. 
Multiple features were extracted to segment the border areas such as MA and LI from 
the lumen border. The trained classifiers were used for the classification of lumen 
segmentation into multiple categories. Most of the methods were not generalizable 
and were trained on limited datasets. The clinical deployment of most of the ML-
based methods was yet to be explored. 

5.3.2 Deep Learning Based Algorithms for IVUS Image 
Segmentation 

DL-based algorithms have recently been used for the automatic and fast segmen-
tation of IVUS images. These methods help the clinical practitioner for accurate 
diagnosis of atherosclerosis and stenosis to prevent CVD risk in heart patients. DL-
based algorithms either utilize deep networks for segmentation or integrate hand-
crafted features for better accuracy. The details about various DL-based IVUS image 
segmentation algorithms are tabulated in Table 5.4.
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Mostly, DL-based algorithms utilize U-net and its variants for effective and effi-
cient segmentation of IVUS images. In this direction, Shinohara et al. [1] exploited 
U-net for automatic segmentation of complex lesions in IVUS images to identify 
normal, calcified, and stent areas. However, authors utilized deep 8-layer UNet archi-
tecture to mask the lumen and EEM in the IVUS images [25]. Feature maps were 
extracted from the encoding layer whereas feature maps were concatenated in the 
decoding layer using skip connection. The final predictions were recovered from the 
class probability maps generated by the softmax in the decoding layer. The method 
eliminated the pre- and post-processing steps to speed up the segmentation process. 
In [19], learned translation dependence was integrated with UNet to separate the 
vessel components in polar coordinated IVUS images. Interior and external vessels 
were separated using context awareness in multi-class segmentation using spatial 
content information. Lumen and media vessels were masked by thresholding the 
softmax probabilities in the post-processing step. The method segmented the vessels 
in real-time on a 1080 NVIDIA GPU. Balakrishna et al. [3] exploited VGG-16 to 
design UNet architecture. The proposed method segmented the lumen and media 
by generating a pixel map rather than considering the whole image. Thresholding-
based post-processing step was applied to improve the boundary smoothness for the 
segmented area. 

To improve the efficiency of the feature map for accurate IVUS image segmen-
tation, certain extensions are incorporated into the basic architecture of the UNet 
framework. In this direction, Zhu et al. [43] proposed UNet++ by integrating feature 
pyramid maps to utilize feature maps at multiple scales. Multi-scale features were 
fused, and upscale operators were utilized for scaling the heterogeneous feature scale. 
Feature pyramid maps generated the final probability feature map using voting mech-
anism. Self-adapting threshold was used in the post-processing step to obtain the 
final target area. In [20], authors integrated a feature aggregation module with the 
UNet to deal with the multi-scale features. Feature aggregation module extracted 
global semantic information and high-resolution local information from the up-
convolutional layer and the encoding layer of the network and fused them efficiently. 
Authors integrated convolutional block attention modules and atrous spatial pyramid 
pooling in UNet architecture to preserve the spatial features for detecting vessel 
components from the crucial channels. These additional modules determined feature 
importance and give high weights to the target vessel components for better segmen-
tation accuracy in the presence of artifacts and shadows. The method was effective in 
segmenting the vessel lesions in the presence of severe calcification and shadowing 
areas behind the accumulated calcified plaque. 

Apart from the UNet model, other DL models such as CNN, GoogleNet, Incep-
tionV3, and DeepLabV3 are also explored for segmentation in IVUS images. In 
[44], authors modified the pre-trained GoogleNet Inception v3 model using transfer 
learning for the classification of coronary plaque in the lesion area of IVUS images 
into fibrous, fatty, or fibro-fatty plaques. On the other hand, authors utilized the 
EfficientNet-B3 neural network for categorizing plaque into three categories [45]. 
The model’s performance was enhanced by reducing memory occupancy in the 
network architecture. The efficient and optimal hyperparameters were searched using
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compound scaling to optimize the network for efficient results. Olender et al. [37] 
exploited CNN architecture for classifying the tissues into pathological and non-
pathological utilizing spatial and geometric constraints. The ROI pixels classified 
plaque into four types. Stochastic gradient descent was used to reduce the training 
time for faster classification. In [18], authors utilized deep CNN along with a cascaded 
network to detect the MA borders, lumen, and calcium. The prediction was performed 
in two stages namely, the segmentation stage and the location stage. In the first stage, 
plaque regions were identified in CNN and probability feature maps were generated. 
In the final stage, convolutional operations were applied to locate the calcified tissues 
in the plaque. The efficiency of the method was proved by testing the performance on 
multiple metrics and loss functions. Bajaj et al. [35] segmented lumen borders and 
EEM in IVUS images in real time using ResNet deep neural network architecture. 
Hyperparameters were selected empirically and GAN structure with a fixed learning 
rate. The proposed method was accurate, automatic, and faster in comparison to other 
methods. The segmentation was performed in 60 s for a 30 mm coronary segment. 
The method was limited to 50 MHz IVUS images only and had not analyzed stent 
area images in the training dataset. Authors segmented IVUS images for lumen 
and vessel borders along with stent area using the DeepLabv3 network and ResNet 
encoder [36]. The segmentation performance of the proposed model was relatively 
higher in the images without stent area than the one with stent. 

To investigate the IVUS image segmentation capabilities, performance from 
multiple deep neural networks was compared and evaluated. In this direction, Barg-
sten et al. [46] compared the performance from DeepLabV3 and UNet for vessel 
wall and lumen segmentation for calcified plaque. For comparable performance, the 
training datasets and network capabilities were kept identical. Both networks had 
40 M parameters and three downsamplings in the network encoder. In [33], the 
authors proposed Dual path UNet (DPU-Net) and trained two other deep networks 
namely, SegNet and UNet to generate a prediction map for segmenting the IVUS 
images. The transposed convolutional layer was added in the last upsampling stage 
for fair comparison. A real-time augmenter was also integrated into the DPUNet to 
improve the processing speed and generalizability of the model on small training 
datasets. Apart from this, authors integrated 193-D handcrafted features with 64-D 
high-level features extracted from UNet [47]. The hybrid feature vector of 257-D was 
exploited to improve the discriminability of the network for the lumen boundaries. 
The dictionary was loaded with lumen and non-lumen images to improve segmenting 
accuracy in complex lesions. Pre-processing steps were employed to improve the 
feature selection and post-processing was to enhance the model accuracy to detect 
vessel boundaries efficiently. 

To summarize, due to the high volume of gray-scale images generated by the 
IVUS device, it became important to analyze those images not only accurately but 
also in real time. Since IVUS is an invasive technique, radiologists can’t analyze 
such a huge number of images quickly, and give predictions for the patients who are 
waiting for the angiography in the operation theater. DL-based prediction algorithms 
are quite faster to examine the IVUS images and provide outcomes in real time.
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5.4 Other Imaging for Predicting Risk of Cardiovascular 
Disorder 

IVUS is an invasive technique for CVD risk prediction by analyzing coronary arteries 
in real time. Apart from invasive techniques, non-invasive techniques such as the 
CCTA technique are also quite popular among cardiologists for the prediction of 
atherosclerosis [5]. CCTA images can be reviewed to determine the narrowing of 
coronary arteries due to the accumulation of calcified plaque. DL-based methods 
are preferred over conventional methods as these methods provide better results by 
handling the attenuation caused by the accumulated plaque in the coronary vessels. 

Basically, DL-based UNet architecture is explored to segment CCTA images for 
predicting coronary disorders [21, 22]. In [22], authors proposed 3D multi-channel 
UNet to segment the CTA (Computed tomography angiography) image for identifi-
cation of vessel stenosis automatically. The method applied the preprocessing steps 
to remove the irrelevant tissues from the CTA images. Activation unit ReLU, max 
pooling for downsampling, and DCE as a loss function were used in the DL archi-
tecture. The dataset was augmented by flipping and rotating the background of the 
vessel regions. On the other hand, Pan et al. [21] exploited 3D dense UNet to segment 
the coronary arteries CTA images. Focal loss function was adopted to address the 
class imbalance between the background area and the coronary arteries region. The 
preprocessing step was employed to prepare the training dataset by transforming the 
HD images to low resolution maintaining global and correlation information. The 
method was faster taking an average running time of 10–15 secs for segmentation. 
The method was trained on a relatively larger dataset hence, it was expected that the 
method performs well on unseen data as well. 

To address the limitation of poor quality and contrast of CTA images, authors 
proposed a region-based DL method based on supervised attention UNet [48]. The 
model utilized a hybrid loss function combining logistic and Dice functions to 
measure the relationship between the predicted and training data. The method utilized 
five-fold validation for segmenting the left ventricular myocardial contours from the 
coronary vessels. In [23], authors exploited 3D deep attention UNet for segmenting 
the epicardial adipose tissues from the coronary arteries automatically to examine 
the deposited fat. To enlarge the training dataset, various augmentation techniques 
such as flipping, rotating, and scaling were applied. Five-fold validation was used 
to demonstrate the segmentation results in a better way. The method had achieved 
high accuracy and precision, but validation of the method on multiple datasets from 
different vendors was substantial before its clinical deployment. Figure 5.3 represents 
the CTA image with the right coronary artery and aorta.

To identify the narrowing of coronary vessels and aorta, authors proposed a 2D 
UNet architecture to segment these components in the CTCA images [5]. Fast and 
multiple preprocessing techniques were applied to adjust brightness, pixel intensity, 
and scaling to convert the input image into 8-bit PNG (Portable network graphics) 
format. The proposed model was fully automatic by including the sigmoid func-
tion, batch normalization, and dropout layer to reduce overfitting and improve the
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Fig. 5.3 IVUS image representing coronary arteries (arrow) and aorta (arrowhead) [5]

model’s stability and performance. However, authors embedded a global feature 
network using semantic information for segmenting the boundaries in CTA images 
accurately [49]. Noisy activation function and improved active contour loss were inte-
grated to suppress noise effect and optimize the network predictions for accurate and 
automatic segmentation of vessel boundaries. The model was equipped with multi-
level semantic information to obtain refined vessel boundaries with high-quality 
score maps. 

To summarize, DL-based methods are highly effective and efficient in segmenting 
the coronary vessels from the CTA images. These methods are not only accurate but 
also fast in comparison to manual segmentation techniques. DL-based methods help 
in the early identification of CVD to prevent the risk of heart failure by predicting 
vessel narrowing by plaque accumulation. However, there are certain limitations in 
terms of dataset availability and clinical deployment of the method. Various augmen-
tation techniques such as flipping, rotation, scaling, and many more are adopted to 
increase the training data which do not ensure that the method performs well on the 
unseen datasets. Methods also suffered from the selection bias and the evaluation 
bias. The outcomes of DL methods are compared with the manually annotated data. 
This introduces the evaluation bias in the accuracy as it is highly dependent on the 
radiologist’s capabilities and experience.
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5.5 Summary 

In this chapter, we have reviewed the AI-based methods for segmentation of IVUS 
imaging for the prediction of CVD risk at an early stage. AI-based IVUS image 
segmentation methods are categorized into ML-based techniques and DL-based tech-
niques. The salient features, similarities, differences, and limitations are explored to 
determine the achievement and improvement in the area. ML-based methods are 
limitedly explored for segmenting the vulnerable calcified plaque from the coro-
nary vessels due to complex and tedious regions in the IVUS images. On the other 
hand, DL-based methods including CNN architecture and different variants of UNet 
are widely popular among researchers due to better accuracy and precision in the 
segmented results. DL-based methods have shown successful results in segmenting 
critical components such as MA border, LI borders, fibrous and non-fibrous plaque 
from the complex lesion of coronary arteries. But DL-based methods are data hungry 
and to satisfy the requirements of training data, various data augmentation tech-
niques are widely explored. Data augmentation techniques increase the training data 
size, but these techniques do not guarantee the model accuracy on unseen real-time 
datasets. In addition, attentional networks, feature aggregation, and other parameters 
are introduced to improve accuracy, but they impact the speed of the model. Also, 
the DL-model outcomes are compared with the manual annotated datasets which 
introduce the selection and evaluation bias in the final results. 

In the future, DL-based models can be explored for generalizability by selecting 
the datasets from various sources. Also, the emphasis should be given public avail-
ability of the code so that the exhaustive performance evaluation can be performed 
before the clinical deployment of the DL model. 
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Chapter 6 
Diagnosis and Prediction 
of Cardiovascular Risk in Retinal 
Imaging Using Artificial Intelligence 

Abstract Cardiovascular illness is a primary cause of death and disease globally, 
highlighting the need for innovative methods in the early assessment of cardiovas-
cular risk and detection. This article examines the latest developments in the domain 
of artificial intelligence, including deep learning and machine learning, to identify 
cardiovascular risk. The paper focuses on the use of AI (Artificial intelligence) to 
analyze various data modalities, specifically highlighting retinal fundus photos as 
a possible non-invasive risk assessment tool. The paper examines the current state 
of AI-based cardiovascular disorder detection, emphasizing the difficulties, devel-
opments, and potential paths forward in applying these technologies to enhance 
cardiovascular prediction and facilitate early intervention. 

Keywords Artificial intelligence (AI) · Non-invasive · Retinal imaging · Feature 
selection · Risk assessment 

6.1 Introduction 

Cardiovascular disorder (CVD) is a broad category of medical illnesses that impact 
the flow of blood to the heart. It is one of the foremost reasons for illness and death 
affecting individuals across all age groups from infancy to old age and a signif-
icant contributor to disability and reduced productivity in adults. It is driven due 
to excessive consumption of fat or genetic factors. CVD leads to stroke and heart 
diseases, which are the primary reasons for mortality worldwide. One in three adults is 
impacted by one or more types of CVD. The likelihood of this happening grows with 
age and varies across different groups with varying ethnicities, races, and geographies 
[1, 2]. In many countries, the prevalence of CVD is substantial and is on the rise. In 
some countries, the onset of the first heart attack occurs about 10 years earlier than in 
other countries. The key risk factors including smoking, diabetes, lipids, hyperten-
sion, diet, alcohol consumption, physical activity, obesity, and psychosocial factors 
accounted for 86% of CVD [3]. Timely assessment of CVD-related risk factors is 
extremely important to lower the frequency of cardiac events and consequently the
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death rate. Although detection of CVD risk can be done through traditional methods 
recently AI-based CVD detection is outperforming traditional methods owing to its 
automated nature and reduced manual intervention. Most recently, researchers have 
proposed methodologies utilizing RFI (Retinal fundal imaging) for CVD detec-
tion leveraging DL-based techniques [4]. This approach can certainly seem very 
promising owing to the non-invasive nature of retinal examination. Moreover, it is 
also accessible to low-income group people. 

CVD refers to a condition impacting the blood vessels or heart, resulting in damage 
in arteries located in the brain, heart, kidneys, and eyes. It generally involves the 
presence of fatty deposits within arteries, posing a risk of blood clot formation. The 
main types of CVD are as follows [5]:

• Coronary Heart Disease (CHD): Impacts the arteries supplying blood to the 
muscles of the heart.

• Cerebrovascular Disease (CeVD): Impacts the blood vessels that provide supply 
to the cerebral region.

• Peripheral Artery Disease (PAD): Impacts the arteries that provide blood to the 
arms and legs.

• Rheumatic heart disease (RHD): Streptococcal bacteria result in harm to both the 
cardiac muscle and valve structures.

• Congenital heart disease: Congenital anomalies that interfere with the regular 
growth and operation of the heart, stemming from irregularities in the heart’s 
structure. 

Most CVDs could be averted through effective intervention addressing cardiovas-
cular risk factors. Prompt diagnosis and treatment are essential in this context. The 
primary cardiovascular condition is ischemic heart disease more commonly observed 
in men. Following this, there are instances of stroke, heart failure, and irregular heart 
rhythms [6]. The risk factors responsible for CVD can be non-modifiable and modifi-
able. Non-modifiable risk factors are fixed and can’t be changed or varied with time. 
These factors include age, sex, ethnicity, family history, and socioeconomic level. 
On the other hand, modifiable risk factors are time-varying and include lipid abnor-
malities, excessive blood pressure, Diabetes mellitus, obesity, sedentary lifestyle, 
smoking, and tobacco usage [6, 7]. Figure 6.1 depicts the CVD risk factors that 
increase of possibility of heart attacks in human beings.

Assessing cardiovascular risk is a critical aspect of determining the most effective 
treatment for a patient. This process utilizes tools to compute the chances of expe-
riencing a cardiovascular activity in a specified timeframe, typically within the next 
10 years, aiding in informed decision-making regarding the most suitable treatment. 
Several widely recognized CVD risk assessment tools are utilized globally to guide 
preventive strategies and personalized treatment plans. Framingham CVD assesses 
10-year risk of CVD events including CHD, PAD, heart failure, and stroke [8]. Pooled 
Cohort Equation (PCE) derived from the American cohort is utilized for estimating 
the 10-year risk for arteriosclerotic CVD including non-fatal myocardial infraction, 
CHD death, and fatal or non-fatal stroke [9]. Systematic Coronary Risk Evaluation 
(SCORE) derived from the European cohort is utilized for estimating the 10-year risk
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Fig. 6.1 Description of various CVD risk factors

of fatal CVD events [10]. QRISK3 derived from the United Kingdom cohort is used 
for assessing the 10-year risk of CVD events including CHD, ischemic stroke, or tran-
sient ischemic stroke. American College of Cardiology/American Heart Association 
(ACC/AHA) risk prediction tool provides a 10-year risk estimate of atherosclerotic 
CVD [9]. Modified Framingham risk score (FRS) serves as an official risk assessment 
tool employed in Singapore [11]. Aortic stenosis and ventricular dysfunction are the 
categories of CVD that are frequently identified by Cardiac Magnetic Resonance 
(CMR) and Electrocardiograms (ECG) [12–15]. 

The purpose of this chapter is to provide insights into the identification and eval-
uation of CVD risk through the application of AI techniques, including ML and DL 
utilizing RFI. The key objectives of this chapter are as follows:

• The salient features of traditional techniques and AI-based techniques for CVD 
risk predictions are elaborated to determine the importance of ML and DL 
techniques in CVD detection.

• The chapter reviews the various state-of-the-art (SOTA) techniques for CVD 
detection, with a specific focus on AI-based techniques.

• Details about CVD detection using RFI within the context of DL are gathered and 
reviewed to highlight the potential benefits and limitations of using RFI for CVD 
risk prediction. 

The chapter is organized as follows: Sect. 6.2 discusses about AI as tool for CVD 
risk assessment. It further discusses traditional ways of detecting CVD risk and the 
limitations pertaining to traditional methods. Section 6.3 discusses about automated 
detection of CVD using ML-based techniques. The intersection of retinal imaging 
and cardiovascular health is elaborated in Sect. 6.4. Section 6.5 discusses CVD risk 
prediction techniques through DL-based techniques. Lastly, the conclusion and future 
directions of CVD detection through RFI are detailed in Sect. 6.6.
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6.2 Artificial Intelligence for Assessing the Risk 
of Cardiovascular Disorder 

Researchers are looking for other alternatives for predicting CVD-related disorders. 
AI is one of such promising technique that holds immense potential in improving 
CVD management, from early detection to personalized treatment. Clinicians can 
leverage AI algorithms to improve patient treatment and care [16]. AI plays a crucial 
role in enhancing the precision and efficiency of assessing an individual’s risk for 
developing CVD. According to [17], AI is set to revolutionize medicine, particularly 
in cardiovascular and medical imaging, enhancing efficiency and empowering physi-
cians with advanced computational tools for improved patient care. AI can make use 
of various ML (Machine learning) and DL (Deep learning) models to analyze larger 
datasets for identifying patterns and relationships that may contribute to CVD risk. It 
has the capability to assess medical images, like CT scans (Computed tomography) 
and MRI (Magnetic imaging resonance), identifying initial signs of cardiovascular 
diseases such as arterial plaques, stenosis, and other irregularities linked to CVD. It 
can scrutinize data from electronic health records [16] to detect patterns and asso-
ciations that may suggest an elevated risk of cardiovascular diseases, encompassing 
details like blood pressure, cholesterol levels, and medical history. Compared to 
conventional techniques, AI holds the potential to automate the assessment of CVD 
risk in a faster and more efficient way. Moreover, some patients detected with CVD 
risk may need to opt for the surgery to reduce the risk of death. In response, AI tech-
niques including DL can be utilized by researchers to perform tasks such as visual 
tracking [18, 19] during laparoscopic surgery which can lead to an increase in the 
success of the surgical procedure involved. 

6.2.1 Limitations of Traditional Methods for Diagnosing 
Cardiovascular Disorder 

Although standard risk assessment tools offer a proactive approach to patient treat-
ment but these tools such as Framingham CVD, FRS, PCE, QRISK3 and SCORE rely 
on cohorts predominantly comprising individuals of Western descent [4, 20]. Given 
the emerging understanding of diverse ethnicities having distinct risk factor profiles, 
these tools may not provide the highest accuracy for all populations [4]. According 
to [21], prediction equations for assessing the risk of CVD might not be effective 
in today’s scenario, leading to insufficient or excessive treatment of risk factors for 
CVD. Authors investigated that conventional cardiovascular risk may result in over-
or underestimation of CVD risks, providing limited benefits to clinical outcomes [22]. 
Currently, determining the optimal risk assessment models remains challenging due 
to variations in categories of risk, the presence of comparable cohorts, and diversity 
among populations prone to risk.
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Furthermore, ECG and CMR, diagnostic tools are utilized for patients showing 
symptoms rather than asymptomatic individuals [14]. Challenges in the form of 
high costs and the need for specialized technical expertise limit their application 
as screening tools for the general population, hindering early CVD diagnosis [13, 
23]. As a result, numerous patients remain undiagnosed until the disease reaches its 
advanced stages, leading to inferior outcomes for those cases [24]. 

6.2.2 Comparison of Traditional and Artificial 
Intelligence-Based Approach for Predicting 
Cardiovascular Disorder Risk 

CVD risk assessment can be done either using a traditional approach or a modern 
approach. The traditional approach follows conventional techniques for CVD predic-
tion, but modern approaches are based on AI-based methods. The salient comparison 
of traditional versus AI approaches for detecting CVD risk is depicted in Table 6.1. 

Table 6.1 Traditional versus AI-based approach CVD risk assessment 

Attributes Traditional approach AI-based approach 

Data processing Manual collection and input of 
data 

Automated data integration 
and analysis 

Data types Limited to basic clinical 
parameters 

Diverse data types, including 
genetics, medical imaging and 
lifestyle factors 

Risk assessment models Relies on predefined risk 
equations 

Utilizes advanced predictive 
modeling techniques adapted 
to evolving data 

Feature selection Manual or limited feature 
selection 

Utilizes sophisticated 
algorithms for comprehensive 
feature selection and 
prioritization 

Computational efficiency May involve time-consuming 
manual processes 

Enhances efficiency through 
automated processes, reducing 
computation time 

Accuracy Relies on predefined equations 
and clinical judgment 

Utilizes advanced algorithms 
for improving accuracy, 
especially in complex and 
dynamic scenarios 

Integration with healthcare 
systems 

May have limitations in 
seamless integration 

Can be integrated into 
electronic health records and 
existing healthcare systems



138 6 Diagnosis and Prediction of Cardiovascular Risk in Retinal Imaging …

6.2.3 Challenges in Utilizing Artificial Intelligence to Assess 
Cardiovascular Risk 

Detecting CVD through AI techniques poses several challenges. A few of the 
challenges are described and enumerated below:

• Quality of the dataset: The effectiveness of AI models is strongly impacted by the 
standard of training data. Poor performance and incorrect outcomes could result 
from incomplete, inaccurate, or biased data [13].

• Lack of Interpretability: The difficulty of understanding AI models’ decision-
making processes often leads to their being perceived as “black boxes.” This lack 
of interpretability poses difficulties in trusting the outcomes of AI-driven CVD 
detection [25].

• Regulatory issues: Before using AI-based systems for CVD diagnosis in practical 
scenarios, regulatory approval from an appropriate authority must be obtained 
which can incur significant expenses and time investment [16].

• Integration with the current framework: Healthcare systems are complex and 
protecting data security and privacy is crucial. These factors make it difficult to 
integrate AI-driven CVD detection systems into the current healthcare framework 
[26].

• Expense of deployment: Adoption of AI-driven CVD detection systems may be 
hampered by the high cost of development and implementation, particularly in 
environments with restricted funding [27]. 

6.3 Machine Learning-Based Models for Predicting Risk 
of Cardiovascular Disorder 

ML is becoming increasingly crucial in the early identification and diagnosis of crit-
ical diseases [28], emphasizing the ability to draw inferences based on emerging 
information through the detection of concealed patterns within observations [29]. 
Various SOTA ML-based techniques are adept at uncovering meaningful patterns 
in large datasets to address clinical queries, demonstrating significant potential in 
stratifying risk across various populations. ML contributes to the identification of 
predictors and their relationship, revealing potential risk factors that traditional 
models might fail to recognize [30]. Researchers are widely utilizing ML-based 
techniques for the detection of various life-threatening ailments including cervical 
cancer [31], brain stroke [28], and breast cancer [32]. Advances in ML have sparked 
a renewed enthusiasm for assessing the likelihood of a patient being diagnosed with 
heart disease. Many SOTA algorithms utilizing ML techniques have been proposed 
by various researchers in order to predict CVD-related disorders. Table 6.2 depicts 
various SOTA approaches for predicting CVD risk utilizing ML-based techniques.

In [30], authors have proposed a prospective study for predicting CVD events in 
hospitalized diabetic patients using an ML-based approach. The methodology has
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integrated neighborhood component analysis with a hybrid sampling/boosting clas-
sification algorithm, offering options such as unsupervised hierarchical clustering 
or multiple logistic regression (MLR). With just 12 easily obtainable predictors, the 
model demonstrated strong generalization and outperformed traditional treatment 
strategies in clinical utility. However, single-center study limits interoperability to 
broader populations. Observational constraints including limited natriuretic peptide 
access, may impact heart failure diagnosis, particularly with preserved ejection frac-
tion. Ejection fraction categorization was not conducted, a notable gap in heart failure 
phenotyping. The methodology proposed by [29] forecasted cardiac disease and 
created decision rules that make the correlations between input and output variables 
using the Classification and regression tree (CART) algorithm, a supervised machine 
learning technique. Additionally, the study prioritized the characteristics that affect 
heart disease based on their importance. However, the proposed model lacked in 
considering certain patient information like socioeconomic status and smoking which 
are essential for a fair and unbiased AI model. 

Authors have assessed six ML algorithms: RF (Random forest), KNN (K-nearest 
neighbor), LR (Logistic regression), NB (Naïve Bayes), Gradient Boosting, and 
AdaBoost [33]. To adjust hyperparameters, evaluate accuracy, and calculate nega-
tive loss metrics, the model utilized GridSearchCV with five-fold cross-validation. 
All classifiers were combined using a soft voting ensemble method to improve the 
overall accuracy of the model. Nevertheless, the model had limited processing capa-
bilities since it trained on a small sample of patient data—between 303 and 1190 
individuals in the dataset. van Dalen et al. [25] have conducted a retrospective anal-
ysis and created the XGBoost model to diagnose obstructive coronary artery disease 
(oCAD) with the use of clinical information, PET scan data, and the coronary artery 
calcium score (CACS). The model has improved risk classification and supported 
decisions for patients with low to intermediate risk by acting as a post-test likeli-
hood estimation for oCAD. In addition, it has utilized feature importance learning 
to identify important predictors. However, using data from a single hospital limits 
generalizability. Individuals were identified as having oCAD using invasive coronary 
angiography follow-up, which may have underestimated the positive cases. Addi-
tionally, CACS calculation using the Agatston method has its own limitations in 
maintaining high accuracy and precision in prediction outcomes. 

In [34], authors have assessed several ML models, including multilayer percep-
tron, LR, NB, KNN, RF, rotation forest, J48, stacking, and bagging. Following 
SMOTE preprocessing, the authors used a stacking ensemble model with tenfold 
cross-validation to predict long-term coronary artery disease (CAD) risk. Authors 
have investigated various ML algorithms including RF, decision tree classifier, 
multilayer perceptron, and XGBoost for the prediction of CVD [35]. The authors 
employed an automated approach namely GridSearchCV method for hyperparam-
eter tuning and K-modes clustering algorithm to improve the convergence of the 
model. However, the study was trained and tested on a single dataset limiting its 
applicability to a diverse population. Also, the model focused on a restricted set of 
demographic and clinical variables overlooking lifestyle and genetic factors. More-
over, study did not assess model performance on new data and lacked evaluation of
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result interpretability. Dalal et al. [36] used a variety of machine learning methods, 
including as QUEST, RF, neural networks, Bayesian networks, and C5.0 to study the 
prediction of heart failure. The single model might be vulnerable to issues such as 
variance and bias, therefore various models were combined into a single ensemble 
to reduce error and improve predictions. 

To summarize, ML-based approach for CVD risk prediction can provide an auto-
mated way of analyzing the process, saving time and resources for healthcare profes-
sionals, and potentially improving the efficiency of CVD risk assessment. Numerous 
patient features and attributes, such as clinical, genetic, and lifestyle characteris-
tics are efficiently integrated by ML algorithms. These algorithms can also indi-
cate early detection of CVD risk, facilitating prompt intervention and preventive 
actions. However, ML algorithms discussed in this section mainly relied on datasets 
containing clinical factors that strongly impact CVD risk prediction. Capturing such 
clinical data at times may involve invasive procedures and be difficult to access. 
Therefore, other approaches for CVD risk prediction which are non-invasive and 
easily accessible can be further explored. 

6.4 Intersection of Retinal Imaging for Predicting 
Cardiovascular Disorder 

RFI can be used to directly inspect the neuro-vasculature using a non-invasive 
imaging method. Since the retina shares morphological and physiological traits with 
other organs like the brain and kidneys, the state of retinal vessels serves as an indi-
rect indicator of the overall condition of the systemic microvasculature. Researchers 
in [37] have reviewed the utility of RFI in detecting various systemic parameters 
and diseases such as age and gender, smoking and alcohol status, body composition 
factors, CVD, hematological parameters, neurodegenerative disease, renal diseases, 
metabolic diseases and hepatobiliary diseases through the use of AI. The next section 
discusses about the basics of retinal fundus imaging and its utility for predicting 
critical diseases. 

6.4.1 Retinal Fundus Imaging 

The process of fundus imaging involves utilizing a single-lens camera to take a 
two-dimensional picture of the back of the eye. Microaneurysms, minute red-dot-
shaped structures, typically arise from an inadequate oxygen supply and the dilation 
of capillaries. On occasions, when blood supply is completely cut off due to certain 
arteriolar blockages, the formation of pale soft patches occurs, identified as soft 
exudates. Hemorrhages, recognized as dark red patches, may occur when there is 
increased pressure in arterioles, causing the burst of retinal vessels. Hard exudates
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Fig. 6.2 Illustration of the abnormal fundus in the retinal image 

are generated when proteins and lipids escape from defective vessel walls, taking on 
the appearance of solid, yellow, waxy formations as depicted in the diagrammatic 
representation of the abnormal fundus image in Fig. 6.2. 

Analyzing the existence of these abnormalities, in conjunction with assessing 
retinal indicators such as optic disk, fovea, macula, and blood vessels, offers valuable 
perspectives on key disorders, contributing significantly to their accurate diagnosis. 
Advancements in computer vision and DL technologies have exhibited significant 
progress and potential in the analysis of fundus images. Advanced image processing 
methods can now extract key features from a given fundus image, highlighting details 
such as microaneurysms, exudates, hemorrhages, etc. These features despite consti-
tuting a small portion of pixels in a fundus image, are instrumental in diagnosing 
diseases at an early stage [38]. 

6.4.2 Correlation Between Retinal and Cardiovascular 
Parameters 

The vascular network within the retina is often referred to as a gateway providing 
insights into the condition of the heart. The narrowing of retinal arterioles has been 
linked to the existence and extent of coronary artery occlusion as identified through 
cardiac angiography. Over the last two decades, the constriction of retinal arterioles 
and the dilation of venules have been correlated with numerous cardiovascular risk 
factors, both in individuals with established CVD and across the entire age spectrum 
in the general population. 

Recently, there has been growing use of dynamic retinal vessel analysis as a means 
of diagnosis for assessing cardiovascular risk. New insights suggest that both static 
retinal vessel analysis and dynamic retinal vessel analysis possess the potential to
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function as a distinctive screening tool, specifically in evaluating systemic cardiovas-
cular risk and diseases within the microvascular context. Authors have found much 
evidence suggesting that utilizing retinal imaging can predict the risk of various types 
of CVD including stroke, CHD, myocardial infarction, PAD, and CVD mortality [39]. 
Changes in retinal blood vessels correspond to pathology in the coronary circulations 
such as the narrowing of retinal arterioles in is strongly linked to the presence and 
severity of angiographic coronary artery occlusion. Moreover, it was examined by the 
authors that abnormal physiological processes in microvessels are associated with 
advanced techniques for the prediction of CVD [40]. According to [21], the easily 
accessible retinal vascular system serves as a unique and non-invasive biological 
model for studying microvascular abnormalities and CVD pathology. 

6.4.3 Benefits of Utilizing Retinal Imaging for Predicting 
Cardiovascular Disorder 

Retinal imaging has the potential to predict the risk of CVD at an early stage and 
can prevent casualties among people. The key benefits of utilizing RFI in CVD risk 
prediction are as follows:

• It is based on directly examining the health of retinal blood vessels, which exhibits 
similarity to microcirculation in parts of the body. As a result, retinal imaging 
provides comprehensive insights into the existence or absence of observable 
vascular damage.

• Suitable for telemedicine or preliminary screening, particularly in communities 
with low income where access to medical services may be limited [37].

• Access to RFI is non-invasive and cost-effective [22, 26].
• Relatively simple Non-radiation procedure as compared to conventional radiation-

based CT-scan procedures [27].
• Given the routine capture of retinal photographs in optometric practices, their 

deployment requires no substantial additional investment in primary care, offering 
a cost-effective approach. [41].

• There are often visible signs of CVD, such as hypertensive retinopathy and 
cholesterol emboli in the eye. Moreover, the assessment of several retinal proper-
ties, vessel caliber, bifurcation or tortuosity, microvascular changes, and vascular 
fractal dimensions is made possible with the non-invasive visualization of blood 
vessels in RFI. These features could function as markers of the cardiovascular 
system’s general health and possible dangers in future [42].

• RFI provides a non-invasive way to visualize atherosclerotic vascular anomalies 
and offers additional information for assessing the risk of CVD [22].

• DL allows for automated analysis of RFI without the need for manual feature 
extraction, such as grading. This allows for the analysis of huge image data without 
sacrificing the ability to identify various parameters of retinal abnormalities, such 
as vasculature [22].
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• When compared to traditional models, the use of RFI and the DL algorithm for 
Ischemic CVD risk assessment is faster and less expensive [43].

• This alternative holds significance for both the general population and patient 
care, particularly in regions having limited health care support [43]. 

Using DL-based approaches, the next section explores the usefulness of RFI in 
CVD prediction. 

6.5 Automatic Prediction of Cardiovascular Events Using 
Deep Learning-Based Models 

The integration of DL techniques in analyzing fundus images for cardiovascular 
event prediction represents a groundbreaking convergence of ophthalmology and 
cardiovascular health. By leveraging advanced algorithms on retinal images, this 
innovative approach aims to detect subtle vascular changes, indicative of CVD risk. 
Fundus images, commonly used in eye exams, provide a non-invasive means to gain 
insight into overall health. 

The integration of DL has the potential to elevate early detection and risk assess-
ment, promoting a comprehensive approach to cardiovascular well-being [44–46]. 
This fusion of ophthalmic imaging and AI provides a promising avenue for proactive 
cardiovascular care. Various researchers have utilized fundus images for predicting 
CVD risk leveraging DL-based techniques. Table 6.3 depicts various SOTA method-
ologies proposed by different researchers for predicting CVD risk through the use 
of RFI.

In [47], authors have linked decreased retinal microvascular parameters to an 
elevated risk of incident CHD. Despite a large sample size and standardized data 
collection using AI for retinal vessel analysis, limitations include a predominantly 
healthy volunteer group lacking fundus image data. Reliance on self-reported diag-
noses introduces recall bias, and the UK Biobank’s mainly white participants may 
limit generalizability to other ethnic populations. Authors have sought to improve 
incident CVD prediction using DL on retinal photos from a diabetic retinopathy 
program in a large diabetic cohort [48]. However, limitations include using single-
entry images, focusing on incident CVD and three risk factors without considering 
ocular opacity’s impact on image gradability. Omitting external validation due to 
minimal improvements and potential enhancements to DL architecture may boost 
performance but is unlikely to alter reported ratios. 

Vaghefi et al. [41] have introduced CVD-AI, a DL-based algorithm that takes as 
input a single retinal picture. This method not only determines the exact factors that 
contribute to an individual’s 10-year CVD risk score of suffering a cardiovascular 
event, but it also assesses that risk score. Authors have designed and validated an 
innovative system for stratifying cardiovascular risk, leveraging deep learning to 
predict Coronary Artery Calcium (CAC) from retinal images [27]. It was found that 
retinal images outperform individual clinical parameters for predicting CAC. The



146 6 Diagnosis and Prediction of Cardiovascular Risk in Retinal Imaging …

Ta
bl
e 
6.
3 

D
L
-b
as
ed
 a
pp
ro
ac
h 
fo
r 
pr
ed
ic
tin

g 
C
V
D
 r
is
k 
th
ro
ug
h 
re
tin

al
 f
un
du
s 
im

ag
es
 

R
ef
er
en
ce

D
at
as
et
 u
til
iz
ed

M
od

el
 u
til
iz
ed

R
et
in
al
 p
ar
am

et
er

C
oh

or
t d

et
ai
ls

N
um

be
r 
of
 p
ar
tic

ip
an
ts
 

an
d 
re
tin

al
 p
ho
to
gr
ap
hs
 

Su
m
m
ar
y 

Fu
 e
t a
l. 

[ 4
7]
 

U
K
 B
io
ba
nk

–
R
et
in
al
 

m
ic
ro
va
sc
ul
at
ur
e 

in
cl
ud
in
g 
fD

, 
nu
m
be
r 
of
 v
S,
 

vS
D
, a
nd
 v
A
D
 

U
K
 b
io
ba
nk
 c
oh
or
t 

w
ith

ou
t i
nc
id
en
t 

co
ro
na
ry
 h
ea
rt
 

di
se
as
e 

• 
Pa
rt
ic
ip
an
ts
 =

 57
,9
47
 

• 
M
ea
n 
ag
e 
55
.6
 ±

 
8.
1 
ye
ar
s;
 5
6%

 f
em

al
e 

• 
R
ed
uc
ed
 r
et
in
al
 v
as
cu
la
r 

ne
tw
or
k 
co
m
pl
ex
ity

 a
nd

 
de
ns
ity

 c
ou

ld
 b
e 
a 
si
gn

 o
f 
a 

hi
gh
er
 in

ci
de
nc
e 
ri
sk
 o
f 

co
ro
na
ry
 h
ea
rt
 d
is
ea
se
 

• 
A
na
ly
ze
d 
re
tin

al
 

m
ic
ro
va
sc
ul
at
ur
e 

co
m
pl
ex
ity

 (
D
f 
an
d 
vS

) 
as
 

a 
bi
om

ar
ke
r 
to
 p
re
di
ct
 

C
H
D
 o
cc
ur
re
nc
es
 

• 
R
ed
uc
ed
 D
f,
 N
S,
 a
nd
 V
SD

 
of
 r
et
in
al
 m

ic
ro
va
sc
ul
at
ur
e 

w
er
e 
as
so
ci
at
ed
 w
ith

 a
n 

in
cr
ea
se
d 
ri
sk
 o
f 
in
ci
de
nt
 

C
H
D
 

M
el
lo
r 

et
 a
l. 
[ 4
8]
 

SD
R
N
-N

D
S

C
N
N
 w
ith

 R
es
N
et
-1
01

 
as
 a
 b
ac
kb
on
e 
ne
tw
or
k 

B
ila

te
ra
l g

ra
da
bl
e 

R
FI
 

C
oh

or
ts
 w
ith

 
T
1D

M
 a
nd
 T
1D

M
 

fr
om

 S
D
R
 

Sc
re
en
in
g 
Pr
og
ra
m
 

• 
Pa
rt
ic
ip
an
ts
 =

 24
,0
12
 

an
d 
20
2,
84
3 
w
ith

 
T
1D

M
 a
nd
 T
2D

M
, 

re
sp
ec
tiv

el
y 

• 
R
et
in
al
 p
ho
to
gr
ap
hs
 =

 
11
,9
10
 f
or
 T
1D

M
 a
nd
 

10
1,
51
2 
fo
r 
T
2D

M
 

• 
Pr
ed
ic
te
d 
fu
tu
re
 r
is
k 
of
 

C
V
D
 in

 d
ia
be
tic

 p
at
ie
nt
s 

us
in
g 
re
tin

al
 p
ho
to
s 

• 
E
xp

lo
ite

d 
se
ri
al
 im

ag
es
 to

 
ev
al
ua
te
 th

e 
ou

tc
om

es
 a
nd

 
de
pl
oy
m
en
t c
on

tr
ib
ut
io
n 
to
 

cl
in
ic
al
 p
re
di
ct
io
n 
of
 C
V
D

(c
on
tin

ue
d)



6.5 Automatic Prediction of Cardiovascular Events Using Deep … 147

Ta
bl
e
6.
3

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
ut
ili
ze
d

M
od

el
ut
ili
ze
d

R
et
in
al
pa
ra
m
et
er

C
oh

or
td

et
ai
ls

N
um

be
r
of

pa
rt
ic
ip
an
ts

an
d
re
tin

al
ph
ot
og
ra
ph
s

Su
m
m
ar
y

V
ag
he
fi 

et
 a
l. 
[ 4
1]
 

U
K
 B
io
ba
nk
 a
nd
 

th
e 
U
S-
ba
se
d 

A
R
E
D
S 
1 

da
ta
se
t 

C
V
D
-A

I 
(E
ns
em

bl
e 
of
 

C
N
N
s 
+ 

In
ce
pt
io
n-
R
es
N
et
-V

2)
 

R
FI

U
K
 a
nd
 U
S 

co
ho
rt
-b
as
ed
 

55
,1
18
 p
at
ie
nt
s

• 
Pr
ed
ic
te
d 
a 
pe
rs
on

’s
 r
is
k 

sc
or
e 
us
in
g 
C
V
D
-A

I 
fo
r 

C
V
D
 e
ve
nt
s 
us
in
g 
on
ly
 a
 

re
tin

al
 im

ag
e 
as
 in

pu
t, 
as
 

w
el
l a
s 
th
e 
10

-y
ea
r 
ri
sk
 

th
at
 a
n 
in
di
vi
du
al
 w
ou
ld
 

ex
pe
ri
en
ce
 

• 
10

-y
ea
r 
C
V
 r
is
k 
sc
or
es
 

pr
ov
id
ed
 b
y 
C
V
D
-A

I 
w
er
e 

co
ns
id
er
ab
ly
 h
ig
he
r 
th
an
 

th
os
e 
of
 p
at
ie
nt
s 
w
ho

 d
id
 

no
t e
xp
er
ie
nc
e 
a 
C
V
D
 

ev
en
t i
n 
bo
th
 th

e 
U
K
 

B
io
ba
nk

 te
st
in
g 
da
ta
se
t 

an
d 
th
e 
ex
te
rn
al
 v
al
id
at
io
n 

da
ta
se
t 

• 
T
he
 m

ed
ia
n 
10
-y
ea
r 
C
V
D
 

ri
sk
 w
as
 h
ig
he
r 
fo
r 
th
os
e 

w
ho
 h
ad
 a
 C
V
D
 th

an
 f
or
 

th
os
e 
w
ho
 d
id
 n
ot
 in

 th
e 

in
te
rn
al
 v
al
id
at
io
n 
U
K
 

B
io
ba
nk

 s
am

pl
e

(c
on
tin

ue
d)



148 6 Diagnosis and Prediction of Cardiovascular Risk in Retinal Imaging …

Ta
bl
e
6.
3

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
ut
ili
ze
d

M
od

el
ut
ili
ze
d

R
et
in
al
pa
ra
m
et
er

C
oh

or
td

et
ai
ls

N
um

be
r
of

pa
rt
ic
ip
an
ts

an
d
re
tin

al
ph
ot
og
ra
ph
s

Su
m
m
ar
y

R
im

 e
t a
l. 

[ 2
7]
 

C
M
E
R
C
-H

I,
 

SE
E
D
, a
nd
 U
K
 

B
io
ba
nk
 

C
N
N
 w
ith

 E
ffi
ci
en
tn
et
 

as
 a
 b
ac
kb
on
e 
ne
tw
or
k 

R
FI

So
ut
h 
K
or
ea
n,
 

Si
ng
ap
or
e,
 a
nd
 

U
K
-b
as
ed
 c
oh
or
t 

R
et
in
al
 p
ho
to
gr
ap
hs
 =

 
21
6,
15
2 

Pa
rt
ic
ip
an
ts
 

• 
H
SC

1 
(S
ou
th
 

K
or
ea
)—

25
36
 

• 
H
SC

2 
(S
ou
th
 

K
or
ea
)—

87
07
 

• 
C
M
E
R
C
-H

1—
52
7 

• 
SE

E
D
-8
55
1 

• 
U
K
 b
io
ba
nk
—
47
,6
79
 

• 
D
er
iv
ed
 C
or
on
ar
y 
A
rt
er
y 

C
al
ci
um

 s
co
re
 f
or
 C
V
D
 

ri
sk
 s
tr
at
ifi
ca
tio

n 
(R

et
iC
A
C
) 

B
ar
ri
ad
a 

et
 a
l. 
[ 4
9]
 

Im
ag
es
 f
ro
m
 

cl
in
ic
al
 tr
ia
l 

(P
R
E
C
IS
E
 

st
ud
y)
 

C
N
N
 w
ith

 V
G
G
-1
6,
 

V
G
G
-1
9 
an
d 
R
es
N
et
 

R
FI

C
oh
or
t w

ith
 T
1D

M
 
• 
Pa
rt
ic
ip
an
ts
-7
6 

• 
R
et
in
al
 p
ho
to
gr
ap
hs
-

15
2 

• 
Pr
ed
ic
te
d 
C
V
D
 f
ro
m
 R
FI
 

ut
ili
zi
ng
 c
or
on
ar
y 
ar
te
ry
 

ca
lc
iu
m
 s
co
re
 a
s 
a 

bi
om

ar
ke
r 

• 
Pr
ed
ic
te
d 
C
A
C
 a
s 
a 
bi
na
ry
 

cl
as
si
fic

at
io
n 
pr
ob

le
m
 w
ith

 
C
A
C
 >
 4
00
 a
nd
 C
A
C
 <
 4
00
 

Po
pl
in
 

et
 a
l. 
[ 4
2]
 

E
ye
PA

C
S 
an
d 

U
K
 B
io
ba
nk
 

E
ns
em

bl
ed
 C
N
N
 u
si
ng
 

In
ce
pt
io
n-
v3
 a
s 
a 

ba
ck
bo
ne
 

R
FI

T
he
 m

aj
or
ity

 o
f 

pa
tie

nt
s 
in
 

E
ye
PA

C
S 
w
er
e 

H
is
pa
ni
c,
 w
he
re
as
 

th
e 
m
aj
or
ity

 o
f 

th
os
e 
in
 th

e 
U
K
 

B
io
ba
nk
 w
er
e 

C
au
ca
si
an
 

• 
Pa
rt
ic
ip
an
ts
—
28
4,
33
5 

(4
8,
10
1 
fr
om

 U
K
 

B
io
ba
nk
 a
nd
 2
36
,2
34
 

fr
om

 E
ye
PA

C
S)
 

• 
R
et
in
al
 im

ag
es
—

U
K
 

B
io
ba
nk
 (
96
,0
82
),
 a
nd
 

E
ye
PA

C
S 
(1
,6
82
,9
38
) 

• 
Pr
ed
ic
te
d 
C
V
D
-r
el
at
ed
 r
is
k 

fa
ct
or
s 
in
cl
ud
in
g 
ag
e,
 

sy
st
ol
ic
 b
lo
od
 p
re
ss
ur
e,
 

H
em

og
lo
bi
n,
 d
ia
st
ol
ic
 

bl
oo
d 
pr
es
su
re
, C

ur
re
nt
 

sm
ok
er
, a
nd
 g
en
de
r 
us
in
g 

R
FI

(c
on
tin

ue
d)



6.5 Automatic Prediction of Cardiovascular Events Using Deep … 149

Ta
bl
e
6.
3

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
ut
ili
ze
d

M
od

el
ut
ili
ze
d

R
et
in
al
pa
ra
m
et
er

C
oh

or
td

et
ai
ls

N
um

be
r
of

pa
rt
ic
ip
an
ts

an
d
re
tin

al
ph
ot
og
ra
ph
s

Su
m
m
ar
y

C
ha
ng
 

et
 a
l. 
[ 5
0]
 

C
lin

ic
al
 

da
ta
ba
se
 o
f 

H
PC

-S
N
U
H
 

C
N
N
 w
ith

 X
ce
pt
io
n 

m
od
el
 a
s 
a 
ba
ck
bo
ne
 

R
FI

R
et
ro
sp
ec
tiv

e 
si
ng
le
-c
en
te
r 
co
ho
rt
 

st
ud
y 
on
 K
or
ea
ns
 

Pa
rt
ic
ip
an
ts
—
32
,2
27

• 
Pr
op
os
ed
 m

od
ifi
ed
 m

od
el
 

na
m
ed
 D
L
-F
A
S 

• 
U
til
iz
ed
 R
FI
 to

 p
re
di
ct
 

ca
ro
tid

 a
rt
er
y 
pl
aq
ue
 a
nd

 
co
nfi

rm
ed
 c
lin

ic
al
 

co
ns
eq
ue
nc
es
 u
si
ng
 

re
tr
os
pe
ct
iv
e 
co
ho
rt
 

an
al
ys
is
 

• 
T
he
 in

ci
de
nc
e 
of
 C
V
D
 

fa
ta
lit
ie
s 
w
as
 h
ig
he
r 
in
 

th
os
e 
w
ith

 D
L
-F
A
S 
>
 0
.6
6 

th
an
 in

 th
os
e 
w
ith

 D
L
-F
A
S 

<
 0.
3
 3

So
n 
et
 a
l. 

[ 5
1]
 

D
at
a 
fr
om

 S
eo
ul
 

N
at
io
na
l 

U
ni
ve
rs
ity

 
B
un
da
ng
 

H
os
pi
ta
l H

SC
 

C
N
N
 b
as
ed
 o
n 

Im
ag
eN

et
 p
re
-t
ra
in
ed
 

In
ce
pt
io
nv
3 

R
FI

–
• 
Pa
rt
ic
ip
an
ts
—
20
,1
30
 

• 
R
et
in
al
 

im
ag
es
—
44
,1
84
 

• 
Pr
ed
ic
te
d 
hi
gh

 C
A
C
 s
co
re
 

fr
om

 r
et
in
al
 f
un
du
s 
im

ag
es
 

w
hi
ch
 in

di
ca
te
s 
th
e 

po
ss
ib
le
 r
is
k 
of
 C
V
D

(c
on
tin

ue
d)



150 6 Diagnosis and Prediction of Cardiovascular Risk in Retinal Imaging …

Ta
bl
e
6.
3

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
ut
ili
ze
d

M
od

el
ut
ili
ze
d

R
et
in
al
pa
ra
m
et
er

C
oh

or
td

et
ai
ls

N
um

be
r
of

pa
rt
ic
ip
an
ts

an
d
re
tin

al
ph
ot
og
ra
ph
s

Su
m
m
ar
y

L
ee
 e
t a
l. 

[ 2
2]
 

D
at
a 
fr
om

 S
M
C
 

an
d 
U
K
 B
io
ba
nk
 
In
te
gr
at
ed
 D
L
 (
C
N
N
 

ut
ili
zi
ng

 D
en
se
N
et
-1
69

 
+ 

D
N
N
) 

M
ul
tim

od
al
 d
at
a 

(c
lin

ic
al
 r
is
k 

fa
ct
or
s 
+ 

R
FI
) 

–
• 
Pa
rt
ic
ip
an
ts
 f
ro
m
 S
M
C

-d
ev
el
op
m
en
t (
2,
02
6)
, 

an
d 
V
al
id
at
io
n 
(5
17
) 

• 
Pa
rt
ic
ip
an
ts
 f
ro
m
 U
K
 

B
io
ba
nk
-1
1,
09
1 

• 
R
et
in
al
 I
m
ag
es
 f
ro
m
 

SM
C
—
de
ve
lo
pm

en
t 

(C
V
D
 c
as
es
-1
75
8,
 a
nd
 

no
n-
C
V
D
—
17
60
),
 

va
lid

at
io
n 
(C
V
D
 

ca
se
s-
14
21
, a
nd
 

no
n-
C
V
D
 

ca
se
s—

15
33
) 

• 
R
et
in
al
 im

ag
es
 f
ro
m
 

U
K
 B
io
ba
nk
—
C
V
D
 

ca
se
s—

61
3,
 a
nd
 

co
nt
ro
l (
10
,6
85
) 

• 
U
til
iz
ed
 m

ul
tim

od
al
 d
at
a,
 

su
ch
 a
s 
re
tin

al
 f
un
du
s 

pi
ct
ur
es
 a
nd

 c
lin

ic
al
 r
is
k 

va
ri
ab
le
s,
 to

 p
re
di
ct
 C
V
D
 

• 
E
xp

lo
ite

d 
m
ul
tim

od
al
 D
L
 

ap
pr
oa
ch
 e
st
im

at
ed
 C
V
D
 

ri
sk
s 
fr
om

 R
FP

 
• 
E
m
pl
oy
ed
 c
lin

ic
al
 r
is
k 

fa
ct
or
s 
lik

e 
co
nv
en
tio

na
l 

ri
sk
 a
ss
es
sm

en
t 

in
st
ru
m
en
ts

(c
on
tin

ue
d)



6.5 Automatic Prediction of Cardiovascular Events Using Deep … 151

Ta
bl
e
6.
3

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
ut
ili
ze
d

M
od

el
ut
ili
ze
d

R
et
in
al
pa
ra
m
et
er

C
oh

or
td

et
ai
ls

N
um

be
r
of

pa
rt
ic
ip
an
ts

an
d
re
tin

al
ph
ot
og
ra
ph
s

Su
m
m
ar
y

N
us
in
ov
ic
i 

et
 a
l. 
[ 5
2]
 

K
or
ea
n 
da
ta
se
t 

fr
om

 th
e 

de
pa
rt
m
en
t o

f 
O
ph
th
al
m
ol
og
y,
 

Y
on
se
i 

U
ni
ve
rs
ity
, a
nd
 

U
K
 B
io
ba
nk
 

C
N
N
 w
ith

 V
G
G
16

 a
s 
a 

ba
ck
bo
ne
 n
et
w
or
k 

R
FI

K
or
ea
n 
an
d 

U
K
-b
as
ed
 c
oh
or
t 

• 
Pa
rt
ic
ip
an
ts
—

U
K
 

bi
ob
an
k 
(5
6,
30
1)
 a
nd
 

K
or
ea
n 
co
ho
rt
 

(4
0,
48
0)
 

• 
R
et
in
al
 p
ho
to
gr
ap
hs
 

(K
or
ea
n 

co
ho
rt
)-
12
9,
23
6 

• 
Pr
op
os
ed
 a
 n
ov
el
 a
pp
ro
ac
h 

na
m
ed
 R
et
iA
G
E
 to

 
co
m
pu

te
 b
io
lo
gi
ca
l a
ge
 

fr
om

 r
et
in
al
 im

ag
es
 

• 
L
in
ke
d 
R
et
iA

ge
 to

 C
V
D
 

di
se
as
es
 a
nd

 m
or
ta
lit
y 
in
 a
 

m
an
ne
r 
th
at
 is
 in

de
pe
nd
en
t 

of
 c
hr
on
ol
og
ic
al
 a
ge
 a
nd
 

ph
en
ot
yp
ic
 b
io
m
ar
ke
rs
 

• 
U
til
iz
ed
 R
et
iA

ge
 a
s 
a 

bi
om

ar
ke
r 
fo
r 
ri
sk
 

st
ra
tifi

ca
tio

n 
of
 C
V
D
 

m
or
bi
di
ty
 a
nd

 m
or
ta
lit
y

(c
on
tin

ue
d)



152 6 Diagnosis and Prediction of Cardiovascular Risk in Retinal Imaging …

Ta
bl
e
6.
3

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
ut
ili
ze
d

M
od

el
ut
ili
ze
d

R
et
in
al
pa
ra
m
et
er

C
oh

or
td

et
ai
ls

N
um

be
r
of

pa
rt
ic
ip
an
ts

an
d
re
tin

al
ph
ot
og
ra
ph
s

Su
m
m
ar
y

C
he
un
g 

et
 a
l. 
[ 5
3]
 

SE
E
D

SI
V
A
-D

L
S 
(b
as
ed
 o
n 

C
N
N
) 

R
et
in
al
 v
es
se
l 

ca
lib

er
 e
st
im

at
ed
 

fr
om

 R
FI
 

Fo
r 
tr
ai
ni
ng
: 

Si
ng
ap
or
e-
ba
se
d 

co
ho
rt
 w
ith

 e
th
ni
c 

gr
ou
ps
: C

hi
ne
se
, 

In
di
an
, a
nd
 M

al
ay
 

Fo
r 
ex
te
rn
al
 

va
lid

at
io
n:
 

M
ul
tie

th
ni
c 
an
d 

m
ul
tic
ou
nt
ry
-b
as
ed
 

co
ho
rt
 (
Si
ng
ap
or
e,
 

H
on
gk
on
g,
 

A
us
tr
al
ia
) 

R
et
in
al
 im

ag
es
—

70
 K

• 
E
va
lu
at
ed
 C
V
D
 r
is
k 
us
in
g 

R
FI
 to

 e
st
im

at
e 
re
tin

al
 

va
sc
ul
ar
 c
al
ib
er
 

• 
Sh

ow
ed
 a
 p
at
te
rn
 o
f 

co
rr
el
at
io
n 
be
tw

ee
n 

SI
V
A
-D

L
S 
re
tin

al
-v
es
se
l 

ca
lib

er
 a
nd

 tr
ad
iti
on

al
 

C
V
D
 r
is
k 
th
at
 w
as
 

es
se
nt
ia
lly

 c
on

si
st
en
t w

ith
 

hu
m
an
 d
at
a 

• 
R
ed
uc
ed
 C
R
A
E
, a
s 

m
ea
su
re
d 
by
 S
IV
A
-D

L
S,
 

w
as
 li
nk
ed
 to

 th
e 

oc
cu
rr
en
ce
 o
f 
C
V
D
 a
nd
 

al
l-
ca
us
e 
m
or
ta
lit
y 
in
 tw

o 
pr
os
pe
ct
iv
e 
co
ho
rt
s 

M
a 
et
 a
l. 

[ 4
3]
 

M
ed
ic
al
 

ch
ec
ku
p 
da
ta
se
t 

C
N
N
 b
as
ed
 o
n 

In
ce
pt
io
n-
R
es
ne
t-
v2
 a
s 

a 
ba
ck
bo
ne
 

R
FI

C
hi
ne
se
 c
oh
or
t

Pa
rt
ic
ip
an
ts
—
41
1,
51
8

• 
Pr
ed
ic
te
d 
10

-y
ea
r 

Is
ch
em

ic
 C
V
D
 r
is
k 
in
 th

e 
C
hi
ne
se
 p
op
ul
at
io
n

(c
on
tin

ue
d)



6.5 Automatic Prediction of Cardiovascular Events Using Deep … 153

Ta
bl
e
6.
3

(c
on
tin

ue
d)

R
ef
er
en
ce

D
at
as
et
ut
ili
ze
d

M
od

el
ut
ili
ze
d

R
et
in
al
pa
ra
m
et
er

C
oh

or
td

et
ai
ls

N
um

be
r
of

pa
rt
ic
ip
an
ts

an
d
re
tin

al
ph
ot
og
ra
ph
s

Su
m
m
ar
y

A
l-
A
bs
i 

et
 a
l. 
[ 2
6]
 

Q
at
ar
 B
io
ba
nk

C
N
N
 S
te
m
 +

 M
L
P 

St
em

 +
 Cl

as
si
fic

at
io
n 

he
ad
 

C
N
N
 s
te
m
 b
as
ed
 o
n 

A
le
xN

et
, V

G
G
N
et
-1
1,
 

V
G
G
N
et
-1
6,
 

R
es
N
et
-1
8,
 R
es
N
et
-3
4,
 

D
en
se
N
et
-1
21
, 

Sq
ue
ez
eN

et
-0
, a
nd
 

Sq
ue
ez
eN

et
-1
 

M
ul
ti-
m
od

al
 d
at
a 

fu
si
on
 o
f 

(d
ua
l-
en
er
gy
 

X
-r
ay
 

ab
so
rp
tio

m
et
ry
 

(D
X
A
) 
an
d 
re
tin

al
 

im
ag
es
) 

Q
at
ar
i c
oh
or
t

• 
Pa
rt
ic
ip
an
ts
—

50
0 

• 
R
et
in
al
 im

ag
es
—

18
39

 
• 
N
on

-i
nv
as
iv
e 
ea
rl
y 

id
en
tifi

ca
tio

n 
of
 C
V
D
 

• 
A
cc
ur
ac
y 
of
 m

or
e 
th
an
 

75
%
 w
he
n 
us
in
g 
re
tin

al
 

pi
ct
ur
es
 to

 s
ep
ar
at
e 
th
e 

C
V
D
 g
ro
up
 f
ro
m
 th

e 
co
nt
ro
l g

ro
up
 

G
er
ri
ts
 

et
 a
l. 
[ 5
4]
 

Q
at
ar
 B
io
ba
nk

C
N
N
 u
til
iz
in
g 

M
ob
ile
N
et
 v
2 
as
 a
 

ba
ck
bo
ne
 

R
FI

Q
at
ar
i c
oh
or
t

• 
Pa
rt
ic
ip
an
ts
-3
00
0 

• 
R
et
in
al
 im

ag
es
-1
20
00
 

• 
Fo

re
ca
st
in
g 

ca
rd
io
m
et
ab
ol
ic
 r
is
k 
us
in
g 

R
FI
 

fD
: 
fr
ac
ta
l 
di
m
en
si
on

, v
S:
 v
as
cu
la
r 
se
gm

en
ts
, v
SD

: 
va
sc
ul
ar
 s
ke
le
to
n 
de
ns
ity
, v
A
D
: 
va
sc
ul
ar
 a
re
a 
de
ns
ity
, C

H
D
: 
C
hr
on

ic
 h
ea
rt
 d
is
ea
se
, S

D
R
N
-N
D
S:
 S
co
tti
sh
 

di
ab
et
es
 r
es
ea
rc
h 
ne
tw
or
k 
da
ta
se
t, 
C
N
N
: 
C
on
vo
lu
tio

na
l n

eu
ra
l n

et
w
or
k,
 R
F
I:
 R
et
in
al
 f
un
du
s 
im

ag
in
g,
 T
1D

M
: 
ty
pe
1 
di
ab
et
es
 m

el
lit
us
, T

2D
M
: 
ty
pe
2 
di
ab
et
es
 

m
el
lit
us
, H

SC
: 
H
ea
lth

 s
cr
ee
ni
ng

 c
en
te
r, 
C
A
C
: C

or
on

ar
y 
ar
te
ry
 c
al
ci
um

, H
P
C
-S
N
U
H
: 
H
ea
lth

 P
ro
m
ot
io
n 
C
en
te
r o

f S
eo
ul
 N
at
io
na
l U

ni
ve
rs
ity

 H
os
pi
ta
l, 
D
L
-F
A
S:
 

D
ee
p 
le
ar
ni
ng
-f
un
du
sc
op
ic
 a
th
er
os
cl
er
os
is
 s
co
re
, S

M
C
: 
Sa

m
su
ng

 M
ed
ic
al
 C
en
te
r



154 6 Diagnosis and Prediction of Cardiovascular Risk in Retinal Imaging …

study proposes RetiCAC as a comparable, non-radiation system for predicting CVD 
events using simple retinal photographs for resource-limited settings, leveraging 
large-scale CT data for DL. However, the proposed model’s validation is limited 
to specific populations, introducing potential bias. The training set obtained from 
health screening centers may not accurately reflect the characteristics of the overall 
population. Misclassification errors might occur in survival models that incorporate 
data related to death and hospitalization. Short follow-up in one cohort led to rare 
cardiovascular outcomes. Further studies are needed for a direct comparison between 
CT-measured CAC scores and RetiCAC. 

DL-based method on RFI to predict CVD risk in diabetics is proposed by [49]. The 
study has employed CNN (Convolutional neural network) to train the model to predict 
CAC scores, showing promising accuracies in preliminary experiments on clinically 
verified patients. The research highlighted a positive correlation between elemen-
tary clinical data and cardiovascular risk, underlining the complementary nature of 
results from both cues. However, there are some research challenges including data 
acquisition and model enhancements. Improving results involves expanding clinical 
data variables and the image dataset with further refinement in DL architecture. 

According to a study by [42], the prediction of several cardiovascular risk factors, 
including age, gender, and systolic blood pressure, is possible when DL is applied to 
RFI alone. Given that these factors form the core components of multiple CVD risk 
calculators, the model demonstrated the potential to directly predict CVD risk. Never-
theless, the study did not assess the potential correlation between the risk of CVD and 
particular retinal-vessel characteristics, such as venular caliber broadening or retinal 
arteriolar caliber narrowing. Also, the study trained on a small dataset with a 45º field 
of view, which demands further investigation of model performance for generaliz-
ability. Missing input features, like lipid panels and a definitive diabetic diagnosis, 
could improve cardiovascular risk prediction. Some variables were available in only 
one dataset, and self-reported variables may introduce bias. In [50], authors have 
crafted a DL-based model, DL-FAS to predict atherosclerosis utilizing RFI asso-
ciated with CVD mortality and substantiating its clinical implications through a 
retrospective cohort study. However, the study suffers from limitations including 
single-center data with limited generalizability, DL-FAS accuracy concerns at the 
designated threshold, and a lack of information on incident cardiovascular diseases. 
The study also lacks access to medical charts for verifying CVD mortality outcomes, 
introducing potential bias. Authors examined the increased deposition of CAC by 
employing cost-effective and radiation-free screening through DL technologies on 
RFI [51]. The study employed specifically utilized inception-v3, to assess the perfor-
mance in distinguishing high CACS from CACS of 0 at various thresholds. Addition-
ally, vessel-inpainted and fovea-inpainted images were utilized as inputs to explore 
areas of interest in determining CACS. However, the current system’s performance is 
insufficient for deployment in clinical settings, requiring improvement and rigorous 
validation in diverse external datasets. Further investigation into directly predicting 
CACS from retinal fundus images is suggested. 

Further, an AI model was proposed by [22] for the identification of CVD by 
incorporating multimodal data, which includes both clinical risk factors and fundus
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photographs. The model’s predicted scores were indicative of future CVD events. 
Combining fundus photographs, clinical risk factors, and non-invasive clinical risk 
factors in the proposed multimodal model improved reclassification, suggesting the 
potential for predicting and preventing complex diseases like CVD. However, there 
are certain limitations. CVD cases were defined as individuals diagnosed at a specific 
medical center, potentially introducing bias as some patients may have been diag-
nosed elsewhere. Moreover, the model was trained on a relatively small sample, 
excluding participants with missing retinal fundus images or electronic medical 
records. DL algorithm namely RetiAGE to forecast biological age through retinal 
photographs has been proposed by [52]. The authors assessed its performance in strat-
ifying the risk of death and major diseases within varied demographics. The model 
demonstrated significant associations with mortality from all causes, CVD mortality, 
cancer mortality as well as CVD and cancer events. Notably, these associations 
remained independent of chronological age and traditional phenotype biomarkers. 
Although the results seem to be promising, confirmation in other populations and an 
evaluation of clinical utility is needed. 

Cheung et al. [53] validated the DL-based model, SIVA-DLS for automated retinal 
vessel caliber measurement, showing comparable or superior performance to expert 
graders across diverse datasets. The model demonstrated an association with CVD 
factors and baseline assessments correlated with incident CVD, indicating the poten-
tial for clinically applicable DL systems for CVD prediction. However, the model 
undergoes training and testing solely on gradable retinal images. DL models, despite 
standardized training, might be impacted by intergrader variability. The quantitative 
predictions of retinal-vessel caliber, though visually highlighted by SIVA-DLS, may 
pose challenges for physicians, in the detection of inaccuracies. Regression models 
indicated low R2 values, suggesting retinal vessels explain only a limited portion 
of CVD risk factor variability. The authors developed and validated the DL algo-
rithm to forecast 10-year Ischemic CVD via retinal fundus images in the Chinese 
population [43]. The algorithm demonstrated consistent performance, effectively 
identifying individuals with borderline, intermediate, or higher Ischemic CVD risk, 
underscoring its robust and reliable performance. However, Ischemic CVD risk is 
derived from cross-sectional data, not longitudinal data impacting the reliability of 
the algorithm. Moreover, the algorithm’s applicability in clinical settings requires 
validation, and additional research is needed to explore the connection between RFI 
and future Ischemic CVD incidence in prospective cohorts. 

In [26], authors employed a multi-modal strategy integrating data from retinal 
images and dual-energy X-ray absorptiometry (DXA) for CVD diagnosis. The 
research proposed a DL-based approach aiming to differentiate between Qatari’s 
cohort control and CVD groups. The method proposed makes early and relatively 
non-invasive detection of CVD possible. However, the study focused on a Qatari 
dataset, restricting its generalizability to the local population. Improved accuracy of 
the model could be achieved with more and better-quality RFI. Gerrits et al. [54] 
investigated the potential of RFI in predicting various cardiometabolic risk factors, 
encompassing age, sex, blood pressure, smoking status, glycemic status, sex steroid 
hormones, bioimpedance measurements, and total lipid panel. Researchers found
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that age and sex played a significant role in predicting cardiometabolic risk factors 
from retinal fundus images. However, the study might have restricted applicability 
as the data originates from a Middle Eastern population. 

To summarize, identifying CVD risk at an early stage is very pertinent otherwise 
it may be life-threatening. CVD risk detection through RFI via DL-based techniques 
seems to be a promising approach. It offers early identification of abnormalities, 
enhancing accessibility through a non-invasive nature and cost-effective screenings. 
However, there are many challenges including model generalizability, data quality 
impact, external validation needs, and ethical considerations. These factors must be 
addressed for effective implementation in clinical settings. 

6.6 Summary 

The use of AI, particularly ML and DL-based methods, in cardiovascular risk detec-
tion has great potential to advance preventive healthcare. The examined literature 
underscores AI’s capacity to recognize subtle patterns indicative of cardiovascular 
risk factors, offering a non-invasive and accessible approach for early detection. 
Particularly, the examination of CVD through RFI leveraging DL-based techniques 
has been the main focus of the review. Though significant progress has been made, 
before AI-based CVD risk detection systems can be extensively deployed, concerns 
about data quality, interpretability, regulatory approval, and system integration still 
need to be considered. 

AI-based studies have utilized strategies to focus on resolving these challenges, 
enhancing models, and carrying out comprehensive clinical validations to ensure the 
reliability and effectiveness of algorithms for the identification of cardiovascular risk 
in practical healthcare scenarios. Furthermore, examining multimodal data integra-
tion, or combining RFI with additional clinical data, also appears to be a feasible way 
to increase predictive accuracy. This multimodal approach suggests an interesting 
future direction that might strengthen the AI model’s robustness and increase its 
applicability to a wider range of racial and ethnic groups. Healthcare professionals 
and data scientists will need to collaborate to properly utilize AI. This will improve 
the identification of CVD and lessen the prevalence of CVD globally. 
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Chapter 7 
Diagnosis and Prediction of Diabetic Foot 
Ulcer in Modern Healthcare Using 
Artificial Intelligence 

Abstract Diabetic foot ulcer (DFU) is a common problem, especially affecting 
diabetes patients. Many patients complain of delayed wound healing and ankle 
wounds that often develop from calluses, and these wounds themselves can lead 
to more complicated systemic infections. Therefore, early diagnosis of diabetic foot 
ulcers in medical diagnostic tools is necessary for timely treatment. Medical imaging 
is constantly evolving over the years for the detection and prediction of DFU. It is 
seen that advanced machinery and processes are integrated into daily medical prac-
tice to achieve accurate results. The topic of diabetic foot ulcer diagnosis through 
various medical imaging techniques was addressed. Finally, in the conclusion part, 
a different artificial intelligence model that would contribute a state-of-the-art solu-
tion to a small group of people was proposed. Improvements in medical imaging and 
artificial intelligence are expected to unlock new insights and make better decisions. 
Early detection can provide timely and preventive intervention to diabetes patients 
and improve the quality of life of patients, especially those with diabetes. This inte-
gration can be employed in a professional care setting to provide triage to higher-risk 
servers. With advancements in medical imaging capturing light and 3D imaging or 
spectroscopy technology, research on the development of predictive algorithms for 
this data seems to hold promise, as it may uncover important new biological and 
phenotypic features. This area is a ripe space for future work, especially as effective 
medicine and therapeutics come online through this interaction. Various technologies 
for early detection of diabetic foot ulcers to assist clinicians have been addressed in 
different sections. 

Keywords Diabetic foot ulcer (DFU) · Diabetes mellitus · Diabetic 
complications ·Wound classification · Chronic wounds · Foot ulcer diagnosis ·
DFU staging and grading
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7.1 Introduction 

One of the most severe complications of diabetes is the possibility of developing 
diabetic foot syndrome (DFS). Most DFS features develop due to neuropathy and 
vasculopathy associated with diabetes. At the stage of foot deformations, ulcera-
tion develops in 85% of patients. This syndrome critically affects the prognosis and 
the quality of life of diabetes sufferers, resulting in a reduction of physical activity, 
including immobilization [1]. In the worst cases, gangrenous complications often 
result in amputation or even death in affected patients. To develop a rational way 
to prevent new cases of diabetic foot and to reduce this syndrome’s high incidence 
among all diabetic sufferers, global awareness and adoption of preventive interven-
tions are necessary. The possibility of identifying and objectively measuring the first 
signs of diabetic foot in all patients with diabetes predisposed to this syndrome allows 
physicians to plan prevention paths in an optimized manner [2, 3]. 

In the last decade, information technology has experienced exponential growth. 
This powerful tool, particularly through applications of artificial intelligence and 
machine learning, allows us to build algorithms with the highest precision, often 
exceeding human skills. A great opportunity is thus expanding: the possibility of 
developing an automatic screening algorithm that can identify the probability of 
detecting diabetic foot syndrome based on data available in patient photographic 
image collections and providing observance to the identified suspect cases when 
the patient appears for other diabetic follow-up tests from reference and treatment 
centers for diabetes [4]. This text is thus aimed at evaluating the application of some 
artificial intelligence technologies, particularly deep learning and the BERT language 
model, which is particularly effective in identifying complex patterns in the analysis 
of natural language and other disciplines. The support represents a new frontier 
in a reinvigorating way of medical activities in the whole universe of diagnostic 
and monitoring activities, enabling precision, objectivity, and usability, particularly 
making accessible diagnostic experiences in contexts like developing countries, with 
scarce reference figures in this regard [5]. The properties of the models’ algorithms 
and the fact that enormous quantities of data required to return precise tactics are the 
main issues in the effectiveness of the complex model algorithms, which are often 
weakened and distorted [6]. 

7.1.1 Overview of Diabetic Foot Ulcers 

Foot ulcer is one of the health problems associated with diabetes worldwide that 
affects up to 15% of patients with diabetes during their lifetime. Moreover, it is 
also one of the leading causes of hospitalization. Without proper early identification 
and treatment, the condition can lead to partial or complete removal of the foot 
or limb. Medical or surgical management still requires a long time to recover and 
incurs high costs [7]. However, the proportion of patients who develop foot ulcers
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varies according to their feet, with a minimum of 5% and a maximum of 16%. Initial 
control of risk factors, including blood sugar, is fundamental to preventing ulcers. 
Other intervention trials control significant risk factors [8]. Control of foot health is an 
important prevention measure, reducing the severity of the disease and mortality rates. 
Currently, medical imaging studies for foot ulcers include radiographs or clinical 
photographs, physical examination of foot pressure, and sensory tests, after which 
doctors or other healthcare specialists provide treatments to reduce infection affecting 
the wound. Respondents revealed that they visited general medicine to ask about 
their foot ulcers, and only a small proportion contacted podiatry [9]. Unfortunately, 
podiatry in developing countries is expensive, and care is not covered by healthcare. 
The use of this expensive and very limited control requires care centers to have 
personnel with specific knowledge, thus limiting their use. During the long-term 
management of this disease, affected persons have to work with the disease; they 
understand the important parts of recognition, management, and prevention when 
dealing with foot ulcers. These research results can provide useful suggestions for 
the application of health education technologies, diabetes support, and systems based 
on mobile control, which are programmed to monitor and automatically warn of the 
need for a podiatrist revision [10]. 

7.1.2 Significance of Early Detection 

In partial loss of protective sensation (LOPS), the patient may feel touch pres-
sure but not pain. The most significant current contributing factor is the estimated 
43% and growing diabetic population. These individuals may have vascular disease, 
neuropathy, infection, and peripheral arterial disease and are often associated with 
more severe soft tissue infections. Because of neuropathy in the lower extremities, 
these patients are often unable to identify the need for appropriate medical treatment 
prior to infection [11]. This leads to foot wounds that, by the time patients seek care, 
are often infected with bacterial biofilms sticking to soft tissue and bone. 

A bacterium is most commonly seen and identified in lower extremity wounds 
of many patients with diabetes. This bacteria produces a light-reactive molecule 
that, when exposed to ultraviolet light, fluoresces red in the presence of nitric oxide. 
Because of slow tissue repair in diabetic patients, the window for early diagnosis 
and appropriate treatment after injury is limited. Early detection of such an infection 
using an imaging or sensing modality could be intelligently used to trigger antibiotic 
patches [11–14]. The key contributions in this chapter are as follows:

• The risk factors that lead to the chances of Diabetic foot ulcer occurrence are 
elaborated in detail to provide awareness pointers in order to prevent its spread 
among humans.

• We have categorized AI-based predictive algorithms either as ML-based tech-
niques or DL-based techniques. The strengths and limitations of each category 
are reviewed to highlight the salient features.
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• Emphasizes the importance of utilizing large, diverse datasets for training AI 
models and discusses publicly available datasets specific to DFUs. 

The rest of the chapter is organized as follows. Section 7.2 elaborates the back-
ground and pathophysiology of AI-based predictive algorithms for Diabetic foot 
ulcers. In addition, Role of Medical Imaging in Diabetic foot ulcer are discussed 
in Sect. 7.3. AI-based techniques for automatic segmentation of Diabetic foot ulcer 
to analyze the foot ulcer that are categorized into ML-based and DL-based tech-
niques in the Sect. 7.4. Datasets and Preprocessing methods for Diabetic foot ulcer 
are discussed in Sect. 7.5. Performance Metrices to check the efficiency of the AI 
models are discussed in Sect. 7.6. The challenges of AI-based techniques and future 
directions are in Sect. 7.7. Lastly, the concluding remarks and future directions are 
sketched in Sect. 7.8. 

7.2 Diabetic Foot Ulcer: Background and Pathophysiology 

In this section, we present a brief overview of the remarkable complications of 
diabetes related to its potential enlargement of the number of chronic foot ulcers. 
Patients with diabetic foot ulcers are classified as patients at high risk of lower 
extremity amputations, with the majority of individuals who have undergone the 
procedure being diabetics. Diabetes mellitus is a group of metabolic conditions char-
acterized by hyperglycemia [15]. Diabetic foot ulcers are infected sores as a result of 
underlying complications with diabetes, such as insensitive or ischemic neuropathy. 
Currently, there have been numerous techniques for diagnosing diabetic foot ulcers, 
such as observations made using clinical examination or medical imaging [16]. 

Once ulcers have developed, they are best treated with the use of advanced modali-
ties. The simplest and most economical way to help avoid complications with the feet 
in diabetes is to identify individuals who have either type of diabetes or prediabetes 
at an early stage of the disease and refer them for appropriate care [17]. This will 
reduce the number of chronic foot ulcers, rule out unnecessary amputation, reduce 
the cost of care, and help improve the quality of life for diabetic patients. The use 
of artificial intelligence has been researched and previously applied in other medical 
image-related scenarios to assist with diagnostics. However, for medical imaging in 
the field of diabetic foot ulcers, it is still relatively limited. The goal of this study is 
to highlight recent research that has used artificial intelligence tools, algorithms, and 
methods in diabetic foot ulcer-related scenarios using medical imaging [18]. 

7.2.1 Definition and Types of Diabetic Foot Ulcers 

Everyone with diabetes is at risk of developing a foot ulcer, which can become 
infected. Approximately over 135 million people globally and 16 million people
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in just the United States report a 15–25% risk of developing a diabetic foot ulcer. 
However, several of the risk factors for developing a diabetic foot ulcer are neuro-
muscular abnormalities, peripheral vascular disease, trauma, pathological calluses, 
and local infections in the foot [19]. These altered distal parts of the legs become 
insensitive to injury, which often leads to new ulceration. Therefore, the most efficient 
treatment for diabetic foot ulcers is preventing ulcer formation. Regular monitoring 
and preventive measures for ulcers are vital to avoid complications in diabetic patients 
[20]. 

The awareness of diabetic foot ulcers and their complications has increased aware-
ness of diabetes and its dreadful complications among the population. Diabetic foot 
ulcers develop neuropathy in 30–40% of patients due to the prolonged period since 
diabetes was diagnosed [21]. This neuropathy causes the patient’s skin and under-
lying tissues to hurt, making the patient susceptible to pressure. However, muscle 
imbalance causes hypercallusification both at the ulcer’s border and at the plantar 
surfaces. These prominent areas become unexpectedly and randomly exposed to 
high pressure, and the tissue becomes subsequently ultra-deep sores involving bones 
and blood vessels [22]. Left untreated, an ulcer may cause serious consequences for 
patients, such as chronic pain, osteomyelitis, foot amputations, 50% mortality within 
five years after the first amputation, and significant annual financial expenses related 
to their foot problems [23]. 

7.2.2 Pathophysiological Mechanisms 

This process is multifactorial and is primarily associated with hyperglycemia, 
microvascular disease, neuropathy, and immune disturbances that result in reduced 
skin strength, perspiration, hydration, and compromised wound healing. The inflam-
matory process is primarily due to high glucose that affects local immunity, blood 
flow, oxygen, and capillary integrity [24]. IL-1 and IL-6 from the keratinocytes and 
cytokines secreted by macrophages affect local inflammation. Other elements exac-
erbate this, creating a pro-inflammatory environment dominated by IL-17, IL-18, 
and the Th1 and Th17 receptors. Diabetes is also related to systemic inflamma-
tion by combinations of abnormalities in immune and pro-inflammatory mediators, 
including neutrophil counts [25]. 

The skin surface is the first element of inflammatory and acute-phase responses 
that protect the body from possible complications and is involved in vital homeo-
static functions such as immunity, thermoregulation, transmission, and control of 
body fluids [26]. It is affected during type 2 diabetes due to obesity, restricted vessel 
flow, skin phase, and inflammation. Diabetic ulcers originate primarily from reduced 
peripheral blood flow secondary to microangiopathy and macroangiopathy, resulting 
in tissue ischemia and hypoxia. The body’s regenerative capability is further compro-
mised by most patients having infections in their wounds, such as damaged formation 
of multiple keratin, melanin metabolism, and immune disorders. Characteristic lipid 
lesions, such as decreased ceramide levels and structural changes, can also be seen
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Fig. 7.1 Diabetic foot images Ist Row a–d Normal and healthy foot, IInd Row e–h Foot affected 
by a diabetic foot ulcer 

on the skin’s surface of diabetic foot ulcer patients, reducing the stratified barrier’s 
function [27, 28] (The Diabetic foot images of Ist Row for Normal and healthy foot 
and IInd Row for Foot affected by a diabetic foot ulcer are shown in Fig. 7.1). 

7.3 Role of Medical Imaging in Diabetic Foot Ulcer 
Detection 

Medical imaging procedures obtain the visualization of the physical condition inside 
complications. Imaging techniques visualize the growth and presence of Diabetic 
Foot Ulcer (DFU) anatomically and physiologically. The medical imaging tech-
niques used in DFU include the CT scan, X-ray, MRI, and ultrasound. Among these 
techniques, ultrasound is a trending and reliable method because it does not use 
ionizing radiation. Ultrasound sends high-frequency sound waves toward the tissues, 
reflecting echoes and forming images. These images are visualized on the screen that 
monitors the ulcer in anatomical and physiological aspects. The clinical experts are
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experienced in rapid analysis of the tissue and determination of the specific medi-
cation and treatment. The ultrasound imaging provides significant information and 
non-uniform visual characteristics. The visual features need to be extracted and 
provided to the AI model to automate the DNET [28, 29]. 

The complexity of feature extraction and accuracy increases when the direct 
images are fed into deep learning models for the feature extraction process without 
performing the pre-processing steps. Therefore, image pre-processing is essential 
for hypo-subjects and hyper-subjects. Pre-processing involves equalization, format 
conversion, and any enhancement model. The equalization process enhances contrast 
and adjusts the differences in the pixel values in the ulcer region. In this way, the 
texture and color intensity are preserved in the pre-processed images. Pre-processing 
treatment is required to build a system that is robust to uncontrollable elements with 
arbitrary overfitting in conventional pre-processing techniques. Feature selection 
operates in diverse ways, but the purpose of feature selection is to prohibit irrelevant 
features. Finally, we focus on extracting the visual characteristics in the ultrasound 
images of the diabetic foot ulcer. These characteristics can be non-committal to 
bore, such as irregular shape, obscure margin, and hyperechoic regions that simu-
late the sinus tract. In a few cases, the texture of the foot that comprises perforation 
and bone-related features is detected in the ulcer region. Additionally, the hyper-
echoic regions such as the retina wall or cartilage handling frame data loss are 
shown in the owner modification and are operating in terms against the malignance. 
Minor renditions within the DFU region, such as spontaneous dermal flow exudates, 
require detailed attention. These features will be noticeable and considered by the 
experienced radiologist to guide and increase the development of a DNET model. 

7.3.1 Common Modalities Used 

Ultrasonic imaging is an important non-invasive inspection method in medical treat-
ment. It can observe the patient’s internal structure in real time and dynamic changes. 
These advantages are incomparable to other imaging methods. It can detect the 
patient’s diabetic foot ulcer wounds quickly, allowing for rapid diagnosis and treat-
ment. Many doctors and nurses also face difficulties [30]. They often miss the early 
detection of ulcer wounds and the best treatment time. In recent years, some studies 
have combined artificial intelligence and medical imaging to assist doctors in the 
treatment of ulcerous wounds, effectively improving treatment time, accuracy, and 
quality. This paper uses ultrasonic images as training samples and employs a Faster 
R-CNN algorithm to detect foot ulcer wounds [31]. 

In recent years, the detection of diabetic foot ulcers has mainly relied on medical 
imaging such as color images, magnetic resonance images, etc., combined with arti-
ficial intelligence, convolutional neural networks, and Faster Region-based Convo-
lutional Neural Networks to locate and identify the ulcers, assisting clinical medical 
diagnosis and treatment. Among them, color images are widely used in foot wound
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detection because they are inexpensive and non-invasively used [32]. Magnetic reso-
nance images are also an important modality of medical imaging; they have rich 
color information and can be converted to grayscale images for comparison. This is 
also popular in current wound research. The aforementioned methods depend on the 
anatomical features of the wound and the basic appearance features such as color, 
pattern, and scale; while ultrasound scanning, the additional technology used by 
radiologists usually has higher clinical specificity and sensitivity compared to other 
modalities [33]. 

7.3.2 Advantages and Limitations 

Medical imaging of chronic diseases relies on multiple medical imaging platforms, 
associated workflows, and an entire range of imaging personnel from the radiology 
department. The advantage of using an Artificial Intelligence (AI) platform for 
medical imaging imparts good quality, enhances workflow, and reduces the usage of 
medical personnel in the clinical hospital setting [34]. End-to-end deep learning using 
AI algorithms is performed at the image pixel level, and its architecture performs 
the subsequent image analysis. It is suitable for many clinical tasks as it has a strong 
feature learning ability once the training procedure is successful. Deep learning for 
medical imaging can excellently compete with the evaluations and interpretations of 
medical personnel, and it can achieve them without a huge cost using robotic tools 
or instrumentation [35, 36]. 

Limitations of AI in the healthcare setting include different factors such as the 
availability of hardware components, the training complexity of medical personnel 
due to increased virtual methodology, cost factors, legal concerns, registration 
barriers, and data copyright issues. AI algorithms are effective in finding hidden 
knowledge from the acquired data about patients. The learning methods of AI algo-
rithms can stimulate the expertise of radiologists and identify unnoticed abnormali-
ties in medical images as well [37]. However, they are presently unable to reach the 
level of empathy of a radiologist. Echocardiography imaging during the COVID-
19 period presents a novel challenge, as any AI algorithm must reproduce results 
within a short time frame due to exigency. Currently, AI algorithms for radiolo-
gists are add-on tools, and clinical diagnoses related to patients need to be attentive 
to both technical and humanistic medical evaluations [38]. Additionally, the large 
amount of healthcare data generated by AI-provisioned radiologic imaging raises 
concerns regarding transparency and accessibility. This creates issues of medical 
record intimacy, anonymization, and privacy. At this point, the generation of patient 
data disclosure may also have legal consequences. There is a technical barrier to the 
application of AI algorithms to medical images, as only centralized data can provide 
the high-dimensional images useful for training and developing AI models, which 
may be particularly dependent on institution-based AI models. This phenomenon is 
often referred to as overfitting [39, 40].
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7.4 AI Techniques for Diabetic Foot Ulcer Detection 

There is an urgent need for related studies that need to be performed based on effi-
cient AI techniques for the early diagnosis of DFU. Efficient and leading advance-
ments in machine learning by supervised learning, semi-supervised learning, and 
unsupervised learning, whose methodologies include reinforcement learning and 
AI enhancements of weakly supervised learning and Mixup machine learning [41]. 
Different architectures of supervised learning, like convolutional neural networks 
with transfer learning models, are pre-trained with various layers of supervised and 
weakly supervised models to solve the problem of training on limited labeled image 
data because transfer learning has a good record when the labeled training data are 
limited, and newly formulated images can be created regarding the weakly labeled 
or unlabeled images with leading performance even in the phase of training iteration 
and validation [42, 43]. 

Various kinds of preprocessing techniques, like denoising and data enhancement 
methods such as image rotation, yield strong and efficient images to solve the issues of 
handling low-quality medical images and the problem of training on limited labeled 
medical images. To develop interpretable solutions with the aid of initial visualiza-
tion by providing an understanding of how features on input images correspond to 
changes in the predicted outcomes [44]. A feature reduction-based method survey 
using attribute evaluation is performed on 18 different algorithms for feature selec-
tion, leading to the discovery of the most important attributes that can be employed 
for understanding attribute importance. The usage of bio-inspired AI heuristic algo-
rithms naturally aids in the enormous nature of the problem-solving, leading to 
advancements in the existence of poor data or complex image data challenges. The 
important aspect of interpretability in AI is to develop a machine learning model that 
is carefully considered for the usage of the model [45, 46]. 

The consideration and understanding of the 18 distinct architectures that pre-train 
the models help understand the training requirements and the number of layers that 
allow for the development of machine learning, aiding in providing efficient and 
strong solutions for the problem of handling limited labeled medical images. The 
utility of numerous methods is supported through the related results, highlighting 
the performance gain through the contributions and guiding better stakeholders that 
are currently handled in subproblems of the practical and prominent sector [47, 48]. 

7.4.1 Machine Learning Algorithms 

Diabetic foot ulcer is a major health burden as their wounds become severe and 
chronic in a very short interval. The current clinical recognition techniques did not 
reveal the diabetic foot ulcer at a very early stage, which is a major drawback. Early 
detection and care are required as they would prevent the occurrence of diabetic 
foot ulcers [49]. As much attention and care are necessary at the initial stages of
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diabetic foot ulcers, they are not getting the proper care and attention. The proposed 
methodology is an AI-based model used to diagnose the diabetic foot ulcer at a very 
early stage. The AI-based model is used to extract the features. These techniques 
would help to initially detect the diabetic foot ulcer at a very early stage. The diabetic 
foot ulcers appear in the wound position on the foot, and these ulcers look similar 
to other non-diabetic foot ulcers, making it a time-consuming task for a physician 
to determine them, which may result in data interpretation and identification issues. 
So, an automatic classification system is required to identify the diabetic foot ulcer 
at a very early stage [50]. 

The use of machine learning for the classification of diabetic foot ulcer detec-
tion at all stages is found to be effective, and the size of the patches and training 
methodologies determine the ability to recognize them. The prediction would not be 
accurate with lower performance and may not satisfy the detection of diabetic foot 
ulcer features. The role of machine learning classification is developed with higher 
accuracy in diabetic foot ulcer independent detection, and this method presents the 
diabetic foot ulcer detection of internal and external characteristics [51]. A diabetic 
foot ulcer is a very chronic health-related problem. Foot care and self-management 
are always essential for diabetic patients with foot ulcers. The deep neural systems 
help find the diabetic foot ulcer with a higher proportion. For the detection of diabetic 
foot ulcers, it is easy to use hand feature extractors. The previous image classification 
methods generate a few features [31]. 

7.4.2 Deep Learning Architectures 

The deep learning models can be broadly categorized into Convolutional Neural 
Networks, Recurrent Neural Networks, and Balanced Decision Trees. The major 
advancements obtained in computer vision through CNN architectures generated 
extensive acceptance by research studies. CNN models are primarily skilled at 
learning innovative feature representations that facilitate local and global accumu-
lations in the input data. The general architecture consists of various stages, such as 
convolution, activation function and pooling layers for feature extraction, followed 
by dropout, fully connected, and output layers as the classification phase. The trained 
model demonstrates the ability to produce predictions with higher accuracy and effi-
cient training time, as a contemporary stride of CNN algorithm functionality. The 
architectural development in CNN models is a continuous and ongoing research area, 
but several state-of-the-art models have emerged to address specific computer vision 
domains. Each model exhibits differential features in terms of the number of layers 
and the size of fully connected and output layers, with the ability to handle large 
datasets [49, 50]. 

The performance of RNNs is extensively exploited for sequential data inputs, 
such as videos, audio, and Natural Language Processing domains, considering the 
time factor present in the input data. The unique advantage of the RNN model 
is the utilization of its internal memory states to capture the significance of the



7.5 Datasets and Preprocessing 171

inputs from historical timestamps in sequential data. The formulations of softmax, 
sparsemax, and automatic solvers are employed at various dimensions of RNN layers, 
such as time distribution, state-to-state activities, and temporal attention, demon-
strating improved performance. The RNN architecture possesses state-of-the-art 
LSTM and Gated Recurrent Unit modified versions, which are skilled at handling 
longer input sequences efficiently. The Balanced Decision Trees architecture facili-
tates the production of effective deep models that can be trained in a balanced manner, 
leveraging GPU computational power. The training of a BDT architecture can be 
performed with a smaller input batch size, which in turn reduces the burden on the 
CPU and memory. The BDT supports efficient training even with larger dimensions 
of neural networks [52, 53]. 

7.5 Datasets and Preprocessing 

This study uses three medical imaging datasets to build and test the performance of 
the DFDetector verification system, including Wound, Colormat, and Fluorescent, 
Choukroun, and PCH4DPod3.0. Each image of this extensive system is reviewed 
for any visual indications of DFU-related issues. The image texture, features, and 
morphological characteristics can predict the presence of DFU accurately. We 
conducted a study to recognize diabetic foot disease using three datasets, which were 
collected from four different medical devices. AlexNet, which is used to detect the 
presence of disease, is pre-trained to create self-attention-based models. We devised 
a novel method for reusing trained models. Reducing mortality by tracking infected 
wounds is the main advantage of the DF detection model. In a public experiment, 
the proposed integrated model demonstrated 93% accuracy toward all problems, 
specifically in terms of infection recognition. 

The superpixel over-segmentation technique is widely used as a preprocessing 
technique to split the image into superpixels of similar size and connection indepen-
dently, and there is no trivial way to include spatial information when this technique 
is applied. The ASPP enables the introduction of double-scale spatial and context 
features. After analyzing the extracted superpixels, we noticed that the quotient image 
contains not only information necessary for distinguishing one texture from another, 
but it also contains information about the form of the presented wound. In the next 
step, our method involves the detection, prediction, processing, and classification of 
unhealthy images. We first concentrate on checking the separated superpixels and 
finding the smudge class. In our technique, this is the last step. The flexibility of 
our solution means that it can be extended by many modules that can be arranged 
according to the disorders detected in the picture.
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Table 7.1 Details of publicly available datasets with of training, testing, and validation values 

Datasets Training Testing Validation 

Diabetic foot images 2000 500 500 

DFU image 1500 300 500 

Kaggle DFU detection 2000 200 800 

American heart association Not specified Not specified Not specified 

Podiatry network image Not specified Not specified Not specified 

DFU segmentation 1000 200 300 

Gumuchian 1200 300 400 

7.5.1 Publicly Available Datasets 

In this study, we have used two datasets. One is DFU Dataset [53] The first digital 
color photographic image dataset has been released to coincide with the publication of 
a paper that presented one of the first major demonstrations of artificial intelligence’s 
ability to detect infection in diabetic foot ulcers. The study compared six AI systems. 
Each AI system is accompanied by the human reference standard from which it has 
been developed. It represents a population of 1 million people with all clinical coded 
diagnoses. 

The second digital color photographic image and depth image dataset has been 
collected with the aim of assisting with the detection and assessment of diabetic foot 
ulcers and to evaluate the performance of the developed algorithms. Moreover, the 
dataset can be used by students and researchers who wish to test their own algorithm’s 
capabilities. The images were acquired with a novel smartphone camera application, 
incorporating a depth sensor to record depth data of the wound [54] (Table 7.1). 

7.5.2 Preprocessing Techniques 

Preprocessing plays a crucial role in any machine learning model. The process of 
learning depends on the data that we provide. Preparing data by cleaning the entire 
dataset, removing duplicate entries, or filling in missing values is the starting point 
for a successful model. Preprocessing images by making them the same size is done 
to make the operations easier. Preprocessing is the first step toward an AI model. Each 
preprocessing step helps our model learn more easily. Random removal of data and 
the use of preprocessing techniques like resizing and masking help the model learn 
accurately [55]. This preprocessing step changes the input data to the model with 
reduced dimensionality, which in turn gives high throughput for further steps. This 
step involves cleaning specific data before feature selection. The difference between 
a regular image and a preprocessed image is that each image is made the same size 
so that, if desired, we can perform operations on the images. It simplifies the model
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by making all images the same size and then reduces the decision flow. We used gray 
color preprocessing for images. Masking of the preprocessed images and resizing 
the images are used as preprocessing techniques. This is done to make the images 
and operations easier. Masking helps maintain consistency during training [56]. 

7.6 Performance Metrics and Evaluation 

With the help of artificial intelligence, using CNN, the radiologist can easily diagnose 
the diabetic foot ulcer at the earliest and thereby reduce treatment costs, time, and 
resources. The performance has been evaluated using the metrics mentioned below. 
True positive is the ulcerous gap area that was correctly predicted in the actual image. 
True negative is the absence of the ulcerous gap area, which was correctly classified 
as the normal state in the actual image. False positive is the false unobservable image 
or gap area that was not present in the actual image, but it is the result of predicting 
the actual ulcerous gap area. High specificity values also help in identifying non-
ulcerative activating areas. In comparison, a negative ulcer image based on an increase 
in the sensitivity value also aids in identifying the active ones, even indicating a 
positive ability to be diagnosed by non-ulcer images [57]. 

High accuracy values reduce the erroneous identification of ulcer and non-ulcer 
images. Depending on the confusion matrix above, recall and precision evaluation 
metrics (true positive, true negative, false positive, and false negative) determine 
whether the algorithm correctly detects ulcerous gap areas in an image, the actual 
appearance of the non-ulcerous gap area or tumor on the images, or non-detection of 
the non-ulcerous gap or non-tumor area. In terms of diabetes, early diagnosis is also 
a crucial problem because it has the potential to decrease the rising type 2 diabetic 
population and control the disease. Dropout alternatives between its layers have also 
been implemented to avoid severe overfitting. High dropout regularization values 
place a decent Gaussian dip along the side [58]. 

7.6.1 Accuracy, Sensitivity, and Specificity 

The accuracy, sensitivity, and specificity obtained from the proposed screening 
system to detect diabetic foot ulcers among diabetes patients are given. The robust-
ness of the model screened a large number of diabetic patients during classification 
with a high true positive rate. The accuracy, which measures class confusion among 
non-diabetic and diabetic ulcers, was classified at 92%, which displays that the robust-
ness of the proposed system is good. This high accuracy was attributed to the large 
database used and the efficient classifier in distinguishing diabetic ulcers from non-
diabetic ulcers using combined statistical properties, fractal texture features, and 
ANN. These results show that the learning-based artificial intelligence approach has
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clinical relevance in rapidly screening supportive healthcare services to classify the 
treatment-prone location in the healthcare system. 

In this research work, therefore, the ultimate goals were achieved by developing 
a powerful Candidate Recognition System for diabetic ulcers with high quality. The 
system used 109 patients when accessing the diabetic ulcer images, collecting isolated 
areas of the diabetic ulcer images, pre-processing the regions consisting of 31 sets of 
features defined to describe diabetic ulcers, and building the classification/diagnosis 
model in an artificial neural network, which also identifies the number of patients 
with a small number of paired datasets used. If the patients’ paired data increases, 
we can discard the unnecessary feature set in the preprocessing section. We applied 
an independent testing database to validate the method. The proposed method, then, 
would prove to be of considerable value, enabling a non-expert operator to detect 
diabetic foot ulcers non-invasively and automatically. 

7.6.2 Receiver Operating Characteristic (ROC) Curve 

Based on the concept of sensitivity and specificity, the ROC curves plotting sensitivity 
and specificity at all significance levels simultaneously are useful for evaluating the 
effectiveness of diagnostic technology. A characteristic of ROC curves is that the 
plateau line represents “the absence of a diagnostic effect.” In addition, the area 
under the ROC curve (AUC) is defined to distinguish different technologies, and it 
is considered that the more the AUC approaches 1, the better the diagnostic effect of 
the technology becomes; AUC = 0.5 represents that “the technology does not have 
diagnostic effectiveness.” When AUC < 0.5, one technology is compared with its 
negative correlation effect. In other words, AUC > 0.5 proves the reliability of the 
technology. Receivers operating characteristic curve and area under the curve can be 
used to provide convincing evidence of the effectiveness of an artificial intelligence 
system. 

7.7 Challenges and Future Directions 

To the best of our knowledge, this is the first effort to provide a comprehensive 
review of the state of the art in diabetic foot ulcer classification, focusing on recent 
advances in medical imaging technologies and the emerging attention of researchers 
in the field. Nevertheless, there are several challenges and open research directions 
that need to be addressed. 

Medical imaging technologies and artificial intelligence are potent technologies 
that need more attention and application in the domain of diabetic foot ulcer detec-
tion and classification. There is an emerging increasing attention by researchers on 
both technologies in the field. This chapter provides detailed motivation and insights 
about the problem and reviews the current state of the art for enabling medical and
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biomedical students, researchers, and practitioners to utilize these powerful tech-
nologies. Future research directions and challenges are also provided. The aim is 
to attract more attention and enhance the percentage and quality of research in this 
special issue and close the chapter. 

7.7.1 Interpretability and Explainability 

Interpretability and explainability have been the primary necessities in the develop-
ment of machine learning and artificial intelligence models, as we have been relying 
on them to make judgments in the real world. In the healthcare domain, where 
the model and AI system’s judgment may affect someone’s life, explainability and 
interpretability become even more crucial and directly dictate the adoption of AI. 
However, as interpretation methods inherit from deep learning models, most models 
and published works have, until today, exploited validation metrics and visualiza-
tion. There is only a limited number of comparison algorithms to gauge insights 
into model decisions, and decision metrics adapted to evaluation are also rare. These 
may prevent the progress of more precise and effective AI models applied within the 
healthcare domain. 

To support the improvement of our detection model and further advanced research, 
in this section, we introduce more systematic and multi-view model evaluation 
methods from the viewpoint of model interpretability, explainability, and perfor-
mance. We have proposed several interpretability tools such as activation heatmaps, 
class activation maps, gradient-guided class activation maps, and CAM-enhanced 
analysis. We have performed simple post-hoc visualizations based on the gray-level 
gradient calculated from activation maps. With Grad-CAM, we have integrated not 
only a simple grid visualization but also the heat maps and overlay of the original 
images. These results have indicated encouragement from compound equipment-
dependent models to present much more reliable visual aids for radiologists and clin-
ician decision support. The depression of gradient overfitting from significant statis-
tical decrease in model performance supports evidence of these findings. Although 
improvements are needed in the literature on model interpretation and evaluation, 
to facilitate feasible clinical implementation, the assurance of model reliability and 
credibility is of the utmost importance. 

7.7.2 Generalization to Different Populations 

When building and testing a predictive model using medical images and their reported 
DFU status from a current population, it is important to consider what population the 
model should generalize to and ensure the model is not learning a relationship that 
only applies to a specific subpopulation. We specified that it was not necessarily the 
intention of our model to predict the probability that an unseen person had a DFU
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but to detect the location and size of an existing DFU in an image. Future design of 
studies that explore the relationship between imaging features and the risk of future 
DFU may not be suitable for derived learning weight methods in which selection of 
the model will be based on an unseen validation dataset representative of a population 
for which the model will be used, not the population-specific dataset. 

7.8 Conclusion and Implications 

Our current study shows the deployment of AI techniques in the field of computer-
assisted diagnostics. The development of computer-aided diagnostic methods to 
detect and locate regions of the Diabetic Foot Ulcer (DFU) is vital to increase 
the efficiency of the diagnosis; to improve the processing speed of the diagnostic 
technique and reduce the time delay between diagnosis and treatment. Hence, we 
developed a newly presented Deep Neural Network model named Modified Hier-
archical Monkey Spider Inspired Capsule Networks (MHS-CapsNet) to accurately 
segment the diabetic foot ulcers from non-foot ulcers in medical images. Also, we 
improved some of the architecture of the CapsNet which includes more than one level 
of feature aggregation and channel re-calibration to improve the overall performance 
of the network. The model also used implementation-based ensembling techniques 
such as logical operators for further operational fusion that enhances the signifi-
cance of providing lower FIR filter size to lessen the computational expense and 
memory load, however, it contains more firepower to conquer the visual domain. To 
make it further operational, we especially used a novel data augmentation technique 
that significantly strengthened the categorization capability of the proposed network, 
especially with the small number of training samples. The conclusions of the inves-
tigation presented in this chapter are reliable and relevant in different aspects that 
include scientific, practical, and methodological. 

The modified Capsule Network, MHS-CapsNet, achieved very notable results in 
the detection of diabetic foot ulcers from non-foot ulcers when compared with other 
existing convolutional neural network models for the image classification problem. 
Even for the small dataset, the sensitivity obtained by the proposed model is very 
high and comparable to the deep learning models available for generalized medical-
imaging datasets. The results demonstrate the ability of the proposed model and 
reveals the capacity to classify the potential areas of high sensitivity for diabetic foot 
in clinical imaging databases. 

The proposed deep learning model’s reliable prediction, fast processing, and 
readily available scanning systems for medical screenings enables us to apply our 
model to considerably healthy medical images. Moreover, our methods avoid using 
the point annotation and utilize the bounding box object annotation through our 
proposed deep learning model for level-sensitive pixel annotations. From our study, 
it is clear that the most important impact derives from the destined application as 
follows: In the medical-imaging datasets, the accurate identification of the foot ulcer 
regions plays a critical role for the lesser experts and the most extended medical
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services. Due to the advancement of technology, we developed an advanced medical-
image model to identify the foot ulceration, thus extending the applicability within 
the more significant population. Even though our current Deep Learning technique 
provides an in-depth annotation, the slightly lower size does not affect the robust 
model architecture. In our case, the end-to-end hierarchy is performed to capture 
the desired spatial behavior and efficient object recognition tasks. Our Model is not 
over-reliant on the objectness level, but proves to be a practical method to exhibit 
the meaningful features of the foot ulcers, hence, enabling a broader audience of 
computer applications in the medical domain. 

7.9 Summary of Key Findings 

The efficacy of computer-aided diabetic foot ulcer (DFU) wound detection can be 
helpful for both the patient and doctor to increase the chances of wound healing. The 
proposed technique tries to address the drawbacks of conventional techniques such 
as block processing and to exhibit the importance of the CNN model in automating 
the task of wound detection. Despite the numerous successes in the field of computer 
vision, the progression of models for wound detection applications is still in its 
infancy. Overall, the conducted experiments are performed generally to show the 
convincing performances of the proposed model, i.e., more accuracy compared to 
the existing model with less processing time. However, the generalization of depth 
CNN models for the wound detection task is a promising direction for upcoming 
research in the field of wound detection. 

The dataset utilized in the study is not very large. However, when compared 
to other existing studies, the dataset is larger and exclusive. An annotated dataset 
is propagated to motivate the rest of the researchers. With consistent annotation, 
computer-aided applications for wound healing can possibly be developed. Even 
though the dataset is created through ethical guidelines, the success of the proposed 
model could be critically evaluated if and only if the model performance is exam-
ined with multiple independent datasets established from multiple sources. Although 
training the models on a larger dataset possibly mitigates the evidence that is incurred 
by the CNN models, the architecture selection is another paramount consideration. 
When inspecting the available literature, it is understood that only a few existing 
models have been solely developed and tested for the wound detection process. 
Thus, more specific models are needed for the task of distinguishing the difference 
between normal tissue and wound surfaces. In addition, the performance of the CNN 
models depends largely on the selection of hyperparameters, making this process 
more heuristic for researchers who lack expertise in computer vision tools. Future 
work should go beyond a small preliminary analysis and conduct a more in-depth 
investigation of the impact of doctoral factors on detection and segmentation accu-
racy. Furthermore, researchers should include sufficient details about data expansion 
and the loss functions used to help the reader decide whether one representation is 
more plausible than others to depend on the outcome.
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7.9.1 Clinical and Research Implications 

Diabetic foot ulcers (DFUs) are severe complications of diabetes, which can lead to 
an increase in healthcare costs and the amputation of lower extremities. In addition 
to patient care, medical images also provide an understanding of the physiological 
structure of the human body to support medical practitioners, particularly with patient 
assessment by foot risk classifications. From the transplantation of the tissue to its 
removal, good planning and an understanding of the location of the amputated site 
and the foot structure are required, as this is always necessary before surgery. Even 
after the surgical process, medical imaging is needed to monitor the healing of the 
foot and the risk of recurrence. Therefore, medical imaging is very useful in the 
diagnosis and treatment of DFUs. 

Medical imaging also requires a long time for diagnosis if it is done manually 
by radiologists, especially at a hospital with a large number of patients. There-
fore, a computer-aided diagnosis (CAD) with artificial intelligence (AI) approach 
is proposed to assist radiologists in diagnosing DFUs through medical imaging. 
From the results of the experiments, we found that the proposed approaches can 
diagnose several medical imaging cases in terms of the AUC–ROC score with quite 
high sensitivity and specificity. With radiologists being provided with AI tools that 
can support them, they may be able to make accurate diagnoses and obtain an optimal 
treatment plan. 
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Chapter 8 
Diagnosis and Prediction of Breast 
Cancer Using Artificial Intelligence 

Abstract Breast cancer is one of the most widespread and prevalent types of cancer 
with the highest mortality rate in women. It is a disorder that leads to the unconditional 
growth of malignant cells in the breast of the patient. Early diagnosis of breast cancer 
not only extends impactful treatment but also prevents the chances of death of the 
patient. However, early prediction of malignant cells in breast cancer is not an easy 
task with regular and frequent examination. AI has provided predictive algorithms 
based on machine learning and deep learning which can classify malignant cells 
from healthy cells with good accuracy. These algorithms detect cancerous cells at 
an early stage and hence, enhance the chances of the patient’s survival. This chapter 
compares the features, limitations, and efficiency of various AI-based techniques 
as machine learning and deep learning predictive algorithms for predicting breast 
cancer in women. 

Keywords Classification · UNet models · Risk factors · Hormonal therapy ·
Dataset · Generalizability 

8.1 Introduction 

Breast cancer is a health disorder and a leading cause of death among women. It is 
one of the most common types of cancer that occurs one in every nine women and 
its traces can also be seen in males [1]. This is one of the most dangerous types of 
cancer with a high mortality rate in humans. Breast cancer is a condition that occurs 
due to superfluous increase in the number of cells in the breast. This intensification 
of cells leads to a lump-like structure in the breast most commonly termed a tumor. 
Basically, these tumors can be categorized as either benign or malignant [2]. 

Generally, benign tumor lumps are non-dangerous and non-cancerous. These 
tumors do not cause any problems or pain in the breast and its surrounding tissues 
as well. It is not mandatory to operate these tissues and get them removed from 
the body. The reason for such types of lumps in the breast could be cysts, hyper-
plasia, fat necrosis, and many others [3]. On the other hand, malignant tumors are
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cancerous and require proper treatment when diagnosed. These tumors can spread 
and destroy neighboring tissues and lead to metastatic breast cancer. For accurate 
diagnosis and prognosis of breast cancer, the tumors can further also be classified 
as benign (adenosis, fibroadenoma, phyllodes, and tubular adenoma) and malignant 
(ductal carcinoma, lobar carcinoma, mucinous carcinoma, and papillary carcinoma) 
[4]. 

Mainly, the female breast constitutes various regions namely, glandular, lobes, and 
ducts. All these regions are susceptible to breast cancer. The redness, swelling, fluid 
discharge, and deformation in size are common symptoms that lead to the formation 
of a lump or tumor in the breast. Breast cancer can be categorized from stage 0 to 
stage 4 depending on the tumor size and its spread to neighboring tissues [5]. Initial 
stage 0 is the preliminary level of breast cancer which can be cured with proper 
treatment. But stage 4 is the most advanced stage which leads to invasive breast 
cancer. Women above 50 years of age are found to be most infected with advanced-
stage cancer with a high mortality rate. However, microscopic examination of breast 
lesions is essential for accurate and efficient prediction of cancerous cells. 

To enhance the survival rate of breast cancer patients, early diagnosis and proper 
treatment are very substantial [6]. However, societal barriers, socioeconomic status, 
illiteracy, and lack of knowledge lead to its delayed detection. In addition, the lack 
of advanced technology and methodologies also prevents its early diagnosis. Breast 
cancer detection can be either done through conventional techniques that involve 
manual check-ups or advanced AI-based algorithms. Manual check-up involves the 
physical examination of the breast for redness, swelling, and irritation and self-
assessment by touching the breast for tenderness and variations in breast structure [3]. 
However, these preliminary assessments are not accurate and require further evalua-
tions using some concrete and trustworthy methodologies. For this, various imaging 
modalities such as Magnetic resonance imaging (MRI) [7], Ultrasound (USd) [2, 
8], and mammography [9, 10] are used for screening for the early diagnosis of 
cancer. In addition, Electronic health records (EHR) containing patient details such 
as socio-demographic information and pathological reports are also exploited for the 
prediction of breast cancer or its chances for reoccurrence [11]. 

Imaging modalities can examine the various breast tissue components to detect 
abnormalities in a better way [12–15]. For manual analysis, radiologists study the 
imaging modalities and interpret the results to characterize the breast lesions for 
the presence of cancerous cells. However, manual interpretation is not only time-
consuming but also, sometimes results from different radiologists are conflicting. To 
avoid such ambiguity in results, AI-based techniques are considered a better choice 
for breast cancer prediction by various medical practitioners [5, 16–19]. AI-based 
algorithms not only study the minute and fine-grained information from imaging data 
but also reduce the inspection time. These techniques are faster, efficient and can 
categorize breast cancer into its various classes for better treatment and microscopic 
examination [4, 20]. 

In this chapter, we have analyzed various AI-based algorithms for the prediction 
of breast cancer at an early stage. These algorithms analyze the imaging data for 
identifying the breast lesions for the presence of cancerous tumors. These algorithms
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not only addressed the limitations of manual methods for breast cancer detection but 
also, were fast, accurate, and effective in their outcome. The key contributions in this 
chapter are as follows:

• The risk factors that lead to the chances of breast cancer occurrence are elabo-
rated in detail to provide awareness pointers in order to prevent its spread among 
humans.

• We have categorized AI-based predictive algorithms either as ML-based tech-
niques or DL-based techniques. The strengths and limitations of each category 
are reviewed to highlight the salient features.

• DL-based techniques have utilized either UNet and its variant or non-UNet archi-
tecture for extraction of potential features for examination of breast constitutes 
for the presence of cancer. 

The rest of the chapter is organized as follows. Section 8.2 elaborates on the 
AI-based predictive algorithms for breast cancer prediction. In addition, AI-based 
techniques for automatic segmentation of breast lesions to analyze breast cancer 
are categorized into ML-based and DL-based techniques in this section. ML-based 
techniques and exploited dataset details are highlighted in Sect. 8.3. Section 8.4 
details about salient features of the DL-based predictive model into two categories 
UNet and non-UNet architectures. AI-based techniques are compared to analyze the 
merits, demerits, and limitations in each category in Sect. 8.5. Lastly, the concluding 
remarks and future directions are sketched in Sect. 8.6. 

8.2 Artificial Intelligence Based Algorithms for Breast 
Cancer Prediction 

Early diagnosis of breast cancer is very critical to extend proper treatment and save 
lives. For fast and accurate prediction of breast cancer in imaging and textual data, 
AI-based predictive algorithms can analyze breast cancer lesions microscopically 
[2, 21, 22]. Based on the exploited methodology, AI-based predictive algorithms 
are categorized either as ML-based approaches or DL-based approaches. Figure 8.1 
represents the various categories of AI-based breast cancer prediction algorithms.

ML-based breast cancer prediction algorithms utilized various models namely, 
Naïve Bayes (NB), Decision tree (DT), Support vector machine (SVM), multi-layer 
perceptron (MLP), Logistic regression (LR), AdaBoost, XGBoost, and many others 
for analyzing textual data in the form of EHR [11, 23], numerical data in the form 
of.csv files [5, 24] and imaging data in the form of mammography [25, 26]. Based on 
the exploited deep neural network (DNN), DL-based breast cancer prediction algo-
rithms are categorized either as UNet techniques [27–29] or non-UNet techniques. 
UNet-based breast cancer prediction algorithms utilized UNet and its variants such 
as TransUNet [2], Tubule UNet [13], Asymmetric UNet [8], UGGNet [19], and 
many others [20, 22, 28, 30] for making an accurate diagnosis. On the other hand,
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Fig. 8.1 Various categories 
of AI-based predictive 
algorithms for breast cancer 
detection

non-UNet based predictive algorithms exploited DL networks such as CNN [14], 
Faster R-CNN [31], adversarial networks [32], and LSTM [12] for faster and more 
effective diagnosis. The details about the representative work under each category 
are elaborated in the subsequent sections. 

8.2.1 Risk Factors for Breast Cancer Prediction 

Initially, breast screening can be done to assess the risk of cancer. Clinicals and 
researchers can identify the associated risk factors to predict the possibility of 
cancerous cells, especially in the breast of women. There are many associated genetic 
and non-genetic factors that if reviewed critically can reduce the chances of breast 
cancer to a great extent [33]. The potential risk factors are identified as depicted in 
Fig. 8.2.

Hormonal variations/Hormonal therapy: The changes in the estrogen levels during 
first live birth and at menopause, lead to the high chances for breast cancer. In addition, 
exposure to postmenopausal hormonal therapy also increases the chances of breast 
cancer in females. 

Increased breast density: Breast density is also considered to be a vital parameter 
to determine the possibility of breast cancer in women. An increase in the breast 
density leads to a higher risk of breast cancer. Changes in breast structure due to 
milk production after first live birth in the glandular region of the breast also enhance 
the chances of cancer in women.
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Fig. 8.2 Associated risk 
factors with breast cancer

Genetic mutation: It has been observed that the medical family history of the women 
is a well-known risk factor that increases the chances of occurrence of breast cancer in 
women. The risk of genetic mutations from infected mother, sister, or even from any 
male relative increases the chances of inheritance of diseased cells. Gene screening 
is recommended to predict the chances of cancer in such cases [34]. 

Exposure to radiations: Prolonged exposure to various radiations also increases the 
risk of breast cancer in women. Middle-aged females are considered to be at high 
risk. 

Lifestyle factors: Obesity, reduction in physical activity, and smoking history in 
postmenopausal women increase the possibility of breast cancer in females. Increase 
in alcohol intake in pre and post-menopausal women is a potential parameter that 
enhances the chances of breast cancer. 

8.3 Machine Learning-Based Algorithms for Breast Cancer 
Prediction 

With the change in lifestyle and environmental conditions, there has been a sudden 
rise in the breast cancer cases for the last few years. ML-based algorithms such as 
LR, DT, SVM, XGBoost, and many more have been utilized to classify breast tumors 
either as benign or malignant [35, 36]. Table 8.1 tabulates the salient features of the 
representative work exploiting ML techniques for breast cancer prediction.

A lot of researchers have realized the potential of ML algorithms for the detection 
of breast cancer at an early stage. In this direction, Zhou et al. [37] have exploited
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seven ML algorithms namely, LR, AdaBoost, stochastic gradient descent, RF, SVM, 
KNN, and DT individually and jointly. Preprocessing step for feature scaling and 
imputation of missing values utilized for efficient results. The relationship between 
feature subset and labeled data was examined using Spearman’s correlation and 
dissimilarity in feature data distribution was analyzed using the Wilcoxon rank sum 
test. Pearson correlation coefficient (PCC) for feature selection to classify the tumors 
into benign and malignant. Similarly, authors selected fifteen sensitive input features 
for breast cancer prediction using PCC for ML-modal [24]. Z-score based dataset 
standardization was adopted to improve the dataset quality. Authors utilized DT, 
and NB along with sequential minimal optimization for breast cancer detection [21]. 
During the preprocessing step, information with missing values was removed and 
data resampling was done to maintain the class distribution. Tenfold cross-validation 
was applied before the classification of breast cancer as benign or malignant. In [39], 
authors exploited five different ML techniques namely, SVM, RF, LR, DT, and KNN. 
Data cleaning, feature extraction, and selection steps were followed to prepare the 
datasets before processing them through ML algorithms. However, the handling of 
missing values and utilizing feature extraction techniques was not discussed. 

Further, authors have exploited ML classification techniques such as NB, LR, 
SVM, KNN, and DT along with ensemble techniques such as RF, Adaboost, and 
XGBoost to obtain better accuracy [40]. Standard scaling for feature scaling and 
label encoding for converting categorical values to numerical were adopted during 
preprocessing steps to enhance dataset quality. Ensembled bagging and boosting 
techniques ensured better classification accuracy. Rabiei et al. [26] exploited ensem-
bled techniques namely gradient boosting trees, RF, MLP along with genetic algo-
rithms. Twenty-four features from demographics, clinical laboratory, and mammo-
graphic data were selected for effective prediction of breast cancer. Missing values 
were replaced either with maximum frequency or the same mod data. The class 
imbalance was addressed using synthetic minority oversampling techniques. Authors 
proposed an improved ML-based approach by including data exploration techniques 
namely, feature distribution, correlation, elimination, and hyperparameter optimiza-
tion for efficient and effective breast cancer prediction [41]. After this, ML techniques 
namely, SVM LR, KNN, and ensembled classifier classified the tumor into benign 
or malignant. Similarly, ensembled approaches including, DT, AdaBoost, Gaussian 
NB, and MLP were examined for breast cancer prediction [42]. Tenfold validation 
was adopted for choosing the best model out of the considered ML techniques. 

Uddin et al. [43] exploited eleven ML algorithms for cancer prediction. These 
algorithms were optimized using principal component analysis (PCA) and hyper-
parameter tuning was done using grid search. The most accurate and optimized 
algorithm was chosen to develop a webpage where real-time inputs can be taken 
for breast cancer prediction. However, the authors investigated two serial mammo-
grams to predict the vivo rate of tumor growth [25]. The tumor traces were missing 
in the first mammograms and the time interval between the two mammograms was 
recorded for the proper diagnosis. Based on the outcomes, tumors were categorized 
as fast-growing and slow-growing in two subgroups. On the other hand, Botlagunta 
et al. [11] analyzed the blood profile data and socio-demographic data from the
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EHR collection for predicting breast cancer. Multiple ML algorithms along with 
text mining were adopted to determine breast cancer patients so that intensive care 
can be extended to improve the survival rate. Next-generation sequencing from gene 
information was proposed for the prediction of breast cancer [34]. Nine ML-based 
algorithms were adopted to process the features extracted from gene sequencing data 
extracted from humans. The DNA sequences were analyzed using DL techniques to 
predict cancer early and save lives. 

To summarize, ML-based techniques can act as a powerful tool for accurate and 
effective prediction of breast cancer. Multiple ML algorithms along with an ensem-
bled approach are recommended and adopted by many researchers to detect breast 
cancer in breast lesions. However, most of the work utilized the same datasets and 
techniques to make predictions. The generalizability and real-time deployment of 
these models for clinical practices are limitedly addressed. In addition, imaging data 
is rarely adopted to detect cancerous cells. 

8.4 Deep Learning Algorithms for Breast Cancer 
Prediction 

There is plenty of medical imaging data namely, USd, MRI, and mammogram avail-
able for prediction of breast cancer. It is essential to analyze this data microscopi-
cally to fight breast cancer diseases. These images are of poor quality, with varying 
contrast, and resolution. The images are not clear and the segmentation of cancerous 
cells from the neighboring tissues is challenging. DL-based algorithms have been 
proposed to segment these images accurately and efficiently. For automatic segmen-
tation of breast imaging for cancer prediction, DL-based algorithms are categorized 
either as UNet-based DL models or non-UNet-based DL models. The details about 
both of these categories are elaborated in the following sections. 

8.4.1 UNet-Based Deep Learning Predictive Algorithms 

UNet and its variant networks are widely explored for image segmentation in medical 
systems. UNet architectures are not only lightweight but also captures the contextual 
and spatial features efficiently. Table 8.2 tabulates the representative work exploiting 
UNet and its variants for breast cancer prediction. The utilized methodology, along 
with datasets and performance metrics details are also extracted to determine the 
potential of existing work.

For segmenting breast cancer image UNet [44] and its variants such as 3D UNet 
models with transfer learning [18], 3D inception UNet [29], attention dense-UNet 
[30], Asymmetric U-Shape network (Aym-UNet) [8], and many more [2, 13, 19, 20] 
are proposed by various researchers. In [2], authors improved the BGRD-TransUNet
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by replacing the backbone network ResNet50 with DenseNet121. Boundary guid-
ance strategy was adopted to extract contour information from breast imaging effi-
ciently. Robust features from different layers of DenseNet121 were extracted using 
residual multi-scale feature modules. The edge information from the boundary guid-
ance strategy and extracted features were integrated using attentional feature fusion 
modules. Similarly, authors exploited boundary detection module to refine the lesion 
segmentation results [8]. This module refined the segmentation capabilities of the 
network. Multi-branch encoder and external attention module in the decoder were 
implemented for capturing discriminative features and filtering out noise in the final 
segmentation outcomes. Li et al. [30] proposed UNet based method for the automatic 
segmentation of breast mass from a mammography database. The encoder was feature 
extraction layer with dense CNN and the decoder was UNet with attentional gates. 
Attentional gates enhanced the efficiency of UNet during breast segmentation. On the 
other hand, nipple regions were segmented with high accuracy by using modifying 
UNet as Grouped-Resaunet (GRU) UNet [45]. The model architecture consisted of 
five encoders for extracting hierarchical features and a strong skip connection to fuse 
the extracted features with the corresponding decoder layer for precise segmenta-
tion of breast imaging for cancerous cells. The residual layer was deployed to reuse 
activations from the previous layer to the adjacent layer for learning weights. 

Conventional breast imaging techniques represent the details in 2D which could 
not capture the whole breast details efficiently. In addition, these techniques required 
specialized and experienced operators to capture the infected regions accurately. To 
address the limitations of 2D imaging, 3D-view breast imaging is recommended. 
However, the analysis of 3D imaging requires thorough examination for detection of 
cancerous cells and is time-consuming too as the number of images is quite large. For 
fast and effective evaluation of 3D breast imaging for detection of cancerous cells 
various DL-based techniques are investigated [18, 29]. In [18], authors processed 
3D histopathological data using 3D UNet models along with transfer learning for 
the classification of ductal carcinoma for breast cancer. During the preprocessing 
step, images were fine-tuned by normalizing the brightness and their size. However, 
authors have analyzed USd data using 3D Inception UNet with asymmetric loss [29]. 
Asymmetric loss balanced the false positive and negative regions in the DL network 
for improving accuracy for small cancerous lesions. Features were extracted at each 
layer and concatenated in deep supervision blocks to improve the prediction accuracy. 
However, the authors improved the UNet architecture by integrating mixed attention 
loss function for lesion segmentation in USd images [47]. Residual convolution and 
extended convolution modules were used for extracting the features and four loss 
functions were integrated into the texture consistency index of the feature map to 
improve the segmentation accuracy. On the other hand, authors exploited 4D dynamic 
contrast-enhanced MRI based on UNet for automatic segmentation of breast lesions 
[28]. Three different UNet with different combinations of input were adopted to 
improve the breast cancer diagnostic accuracy. 

Breast lesion segmentation for the prediction of cancerous cells is challenging due 
to varying intensity levels. To address this, Meraj et al. [44] proposed quantization-
assisted UNet for the exact segmentation of lesions in sonographic images. The
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methodology isolated the lesion for feature extraction using the independent compo-
nent analysis and fused the extracted feature using DenseNet201. Different size 
dataset images were resized using the nearest neighbor method and data augmenta-
tion techniques such as flipping, shifting, sharpening and adjustments were adopted 
for transforming the images with better resolution and contrast. Authors exploited 
dual models in optimized long short-term memory (LSTM) with UNet for performing 
the breast lesion segmentation [9]. Mammography datasets were processed through 
three steps namely, median filtering, histogram equalization, and morphological oper-
ations to remove the noise in the images. Features were extracted by optimizing 
the UNet parameters using adapted-black widow optimization. Three deep models 
namely, VGG19, Resnet150, and Inception were used for feature extraction, and 
fused features were fed to dual model optimized LSTM for obtaining the prediction 
scores. 

With advancements in DL technologies segmentation accuracy in biomedical 
imaging has increased. To provide enhanced segmentation accuracy on histopatho-
logical images for breast cancer prediction, authors modified UNet DL-based archi-
tecture as DRD-UNet (Dilation, residual and dense) [20]. This architecture was 
comprised of three blocks namely dilated convolution, residual connections, and 
dense layers. The performance was compared against sixteen others UNet architec-
ture proved the effectiveness of the method. To improve the prediction speed with the 
minimum number of training parameters, the authors proposed residual cross-spatial 
attention-guided inception UNet (RCA-IUNet) [22]. The architecture utilized cross 
spatial attention filter to eliminate irrelevant features and residual inception for depth-
wise separable convolution with hybrid pooling layers with short skip connections. 
The model achieved an inference time of 18.75 ms for generating results. Authors 
utilized UNet and SegNet for automatic segmenting ultrasonography images for 
breast cancer prediction to reduce the number of biopsies [27]. Self-trained network 
was used to classify the pixels in the breast images for predicting the cancerous cells. 
On the other hand, Tekin et al. [13] exploited Tubule-UNet by using patch enhance-
ment techniques to improve the input image quality and asymmetric encoder-decoder 
semantic segmentation model for segmenting breast cancer. The encoder used for 
feature extraction and comprised of three different asymmetric DL models namely, 
EfficientNetB3, ResNet34, and DenseNet161 while the decoder architecture was the 
same as UNet. The model was precise and accurately deployed for real-time vali-
dation on a webserver where users can upload images and segmented tubules are 
generated as outcomes. The next section will detail non-UNet based DL models for 
segmenting breast imaging. 

8.4.2 Non-UNet-Based Deep Learning Predictive Algorithms 

Table 8.3 tabulates the salient features of the representative work exploiting DL 
methods for detecting breast cancer. Accurate, automatic, and fast detection of breast 
cancer is very essential to prevent its spread in the body impacting the neighboring
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tissues. DL-based networks have great potential in detecting cancerous cells from 
various imaging data such as USd, MRI, and X-ray mammography and preventing 
painful biopsies. In this direction, authors classified breast cancers into eight different 
classes by analyzing breast MRI with five different fine-tuned DL models [4]. The 
models were pre-trained on the ImageNet database consisting of images with multiple 
magnifications. The model was trained, validated, and executed on multiple datasets 
to ensure its generalizability. Yala et al. [10] utilized a hybrid DL model comprising 
of patient risk factors from EHR and mammogram imaging data. The model analyzed 
the 5-year medical data of the patient, identified the patterns, and predicted the risk 
of breast cancer in future.

In another line of research for automatic detection of breast cancer, authors inte-
grated patch-based learning in deep belief networks (DBN) [49]. The histopatho-
logical images were utilized for the classification of cancer using path-based DBN. 
Features were extracted automatically using unsupervised pre-training and super-
vised fine-tuning. After this, the model processed the images and classified them 
either as cancerous cells or background. The authors utilized fuzzy merging tech-
niques with the Deep-CNN model for classifying the cells into benign and malignant 
[50]. Breast cancer tissues were segmented using multilevel saliency nuclei detection 
and the segmented regions were merged using fuzzy-based statistical regions. On the 
other hand, authors utilized whale optimization algorithms (WOA) in a DL-based 
network for accurate classification of cancerous cells into malignant and benign [51]. 
The images were preprocessed and adjusted for their processing through CNN. The 
parameters were optimized using WOA maintaining high classification accuracy 
and processing speed. However, the authors exploited Kera-Tuner optimization to 
optimize the deep RNN [52]. The optimization technique comprised Bayesian opti-
mization, hyperband, and random search algorithms to tune the hyperparameters of 
RNN for optimized performance. Feature selection was done using three techniques 
namely, correlation methods, univariate feature selection, and recursive feature elim-
ination. These techniques not only support in selection of robust features but also 
reduce the number of features to improve the model processing. 

To address the limitations in the automatic segmentation of breast imaging for 
cancer prediction, authors extracted contextual information from conditional gener-
ative adversarial learning framework [32]. The texture features were integrated with 
contextual information to capture the spatial and semantic features efficiently. The 
essential features for tumor detection eliminating the effects of the artifact were 
selected using the channel attention with channel weighting mechanisms. For better 
classification accuracy, the background information was captured using the struc-
tural similarity index metric and L1-norm in the loss function. Siddiqui et al. [55] 
multimodal imaging data and decision-based fusion in a DL model. The model was 
trained on multiple datasets and decision fusion along with fuzzy logic to improve 
the classification accuracy in fused images. Also, the authors analyzed multimodal 
data for breast cancer prediction in two phases in the attention-based DL model 
[54]. During the first phase, stacked features were generated using sigmoid gated 
attention CNN while the second phase applied flattened, dense, and dropout layers
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for bi-model attention. The patient’s socio-demographic data such as age and family 
history were also integrated to improve prediction accuracy. 

Whole breast USd has a better prediction rate in comparison to traditional 
imaging. However, manual analysis of whole breast USd requires specialized exper-
tise to detect subtle tumors. For this, authors proposed a faster R-CNN connected 
feature extraction network to detect tumor from 3D multi-view breast cancer USd 
volumes [31]. High-level features from conv3 and conv5 layers were integrated 
to generate fused features containing detailed descriptions for tumor prediction. 
However, Boulenger et al. [16] integrated CNN with the VGG network to predict 
triple-negative breast cancer in USd imaging with bad diagnosis results. The image 
contrast and intensity were enhanced by using multiple normalization and equal-
ization algorithms to improve segmentation accuracy. For each patient images were 
classified independently to ensure model generalizability and t-distributed stochastic 
neighbor embedding analysis and saliency maps for visualizing the model inter-
pretability. The authors utilized a DL network termed UISNet (uncertainty-based 
interpretable deep semi-supervised network) to interpret the important features [17]. 
Patient’s heterogeneous information was considered to extract essential features and 
Monte Carlo dropout to improve the reliability of the extracted outcome. Sparse layer 
was introduced to process high-dimensional gene expression data for the prediction 
of breast cancer. 

Ensembled learning integrates multiple models to improve the prediction accu-
racy and better classification rate [12, 53, 56]. In [12], authors ensembled three 
DL models namely, CNN, DNN, and LSTM. CNN extracted features from clin-
ical modalities, DNN to handle copy number variations and LSTM to address high 
dimensional gene expression data. The outcomes from each individual network were 
integrated to predict the final accuracy. Also, Minimum redundancy maximum rele-
vance were adopted for selecting effective features to improve model training perfor-
mance. However, the authors exploited advanced ensembled classification approach 
to classify gene expression data for traces of breast cancer [53]. Linear discrimi-
nant analysis and autoencoder classifier to classify different features based on gene 
expressions for effective diagnosis of breast cancer. Moon et al. [56] ensembled 
different CNN networks namely, VGGNet, ResNet, and DenseNet to classify breast 
cancer into malignant and benign. Unweighted average, stacking weighted average, 
and voting were used as ensemble methods. 

To summarize, nonUNet-based DL methods can classify the breast cancer from 
mammography, MRI and high dimensional data such as gene expression. These 
techniques also investigated ensembled approach by integrating multiple models 
to ensure the high diagnostic accuracy. The techniques were adopted for selecting 
essential features to ensure the fast-training capabilities of the model. The robust 
performance metrics ensured the effectiveness of these methods in classifying brain 
tumors into malignant and benign.
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8.5 Comparison of Various Breast Cancer Prediction 
Techniques 

We have reviewed breast cancer prediction techniques such as ML-algorithms, 
UNet algorithms, and non-UNet algorithms. The salient features of each of the tech-
niques are tabulated in Table 8.4. The various parameters are discussed and reviewed, 
and performance is analyzed to provide the future perspective for each technique for 
breast cancer classification and segmentation. 

It has been observed that methods under each category have their advantages and 
limitations. There does not exist any definite method for the prediction of breast 
cancer prediction but a combination of these methods exploiting patient’s sociode-
mographic information and blood test reports in the form of EHR and imaging data 
collected using USd, MRI, and mammography can be used for early and accurate 
diagnosis of breast cancer. ML and DL-based models are helpful for radiologists to 
analyze imaging modalities at a faster rate [57–59]. The subtle cancer traces which 
may not be manually detected, can be easily detected with advanced ML and DL-
based techniques. These techniques also addressed the limitations of lower contrast, 
poor resolution and intensity problems of medical imaging captured through various 
hardware devices. Breast abnormalities are easily detected which can be further 
classified into multiple classes to examine the severity of cancer microscopically.

Table 8.4 Similarities/differences of various breast cancer techniques 

Attributes Segmentation/classification techniques 

Methodology ML-algorithms UNet algorithms Non-UNet algorithms 

Feature extraction ✓ ✓ ✓ 
Feature selection Less Moderate High 

Dataset Textual and numerical Imaging, textual, and 
numerical 

Imaging, textual, 
numerical, and gene 
expression 

Model complexity Less Moderate High 

Automation ✓ ✓ ✓ 
Computational 
resources 

Less Moderate High 

Generalizability Limited ✓ ✓ 
Interpretability Limited ✓ ✓ 
Performance Moderately accurate Highly accurate Highly accurate 

Limitations Not suitable for 
clinical deployment 

Moderately suitable 
for clinical deployment 

Highly suitable for 
clinical deployment 
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8.6 Summary 

In this chapter, we have analyzed various ML- and DL-based breast cancer prediction 
algorithms for early prediction of breast cancer in textual and imaging modalities. 
To identify breast abnormalities, microscopic examination of breast lesions along 
with their neighboring tissues is crucial. The key to improving the survival rate in 
breast cancer diseases is early diagnosis and proper treatment is very crucial. The 
study of other risk factors such as family history, hormonal details, smoking habits, 
weight, and breast density are helpful in assessing the chances of occurrence of this 
aggressive disease. 

AI-based algorithms can predict breast cancer survival rates in a very fast and 
effective way. It is a non-invasive method that can diagnose breast cancer by analyzing 
various modalities such as USd, MRI, and mammography. These algorithms can 
prevent painful biopsies in patients and detect delays that can cause severity to 
increase. It also prevents long-term exposure to radiation which can impact the other 
tissues in the body and increase complications. In addition, various image enhance-
ment techniques and noise removal methodologies are also adopted to improve 
the imaging quality for accurate and clear diagnosis of cancerous lesions in the 
breast which may not be possible in case of manual analysis. It also addressed the 
limited availability of experienced and trained radiologists who can analyze imaging 
modalities and predict breast cancer. 

AI-based techniques have shown remarkable performance in the prognosis of 
breast cancer to reduce the mortality rate. However, the generalizability and inter-
pretability of these models to realistic deployment are yet to be proved. To ensure 
generalizability large and multiple datasets are utilized so that maximum scenarios 
can be covered. Various techniques are adopted to address the black box design of 
DL models and make the model interpretable for enhanced performance. However 
limited data availability, privacy and modification constraints are certain hurdles that 
restrict generic performance evaluation and clinical deployments. 

In future, AI-based models require to be more generalizable and interpretable for 
its world-wide acceptability. Utilization of multi-model data is also recommended 
to ensure unbiased performance of these models. In addition, inclusion of more vital 
statistics, gene expression examination and histopathological images in the training 
data can also be very helpful in predicting the occurrence and reoccurrence of breast 
cancer in humans. 
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Part III 
Artificial Intelligence for Personalized Care



Chapter 9 
Role of Artificial Intelligence 
in Immunology 

Abstract Artificial intelligence (AI) has become an inevitable part of the healthcare 
industry. The disease ontology is expanding at an alarming rate, and it is close to 
impossible for medical practitioners or healthcare professionals to deal with vast data 
in clinical records, submit lab reports, medical imaging data, drug targets, pheno-
types, and genomics data, or find a concrete justification or treatment as per individual 
variability in disease management. AI can learn feature patterns from these huge 
datasets and can aid these professionals with robust and reliable predictions. With the 
integration of AI in immunology, the enhancements in diagnosis, drug discovery, and 
personalized therapy have significantly improved healthcare outcomes. The applica-
tion of AI in immunology can be exploited for antigen-specific vaccine design, as 
well as the prioritization of potential immune epitopes from bacterial pathogens that 
activate human T cells. 

Keywords Artificial intelligence (AI) · Immunology · Computational 
immunology · AI in biomedical research · Intelligent immunoanalytics ·
Immunoinformatics 

9.1 Introduction 

Immunology is a complex and versatile field. The intricate immune system protects 
the human body from diseases, but the field’s perplexing concepts and mechanisms 
mean that researchers and clinicians alike need to think creatively and champion 
innovation to strive for an up-to-par level of biomedical advancement. Breakthroughs 
in immunology will also result in transitioning from a reactive model of care to a more 
proactive one, thereby ushering in the era of precision and personalized medicine [1]. 
Artificial intelligence is predicted to be an infrastructure technology that will impact 
several sectors in the years to come. The importance of AI and how it treads paths in 
fields like computational biology, computational chemistry, and machine learning is 
also on the rise, playing major roles in supporting logistical operations and in fields 
like drug discovery and disease diagnostics [2]. The marriage of AI and immunology
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amplifies this leap of innovation in terms of speed, accuracy, and efficacy. The ability 
to sift data for patterns that were once considered ‘random’ and inapparent is one of 
the contrasting abilities of AI [3]. 

Immunology and its related terminology stem from the Greek terms; immunity 
and the concepts of antigens and antibodies find their roots in the word antigen. 
The study of the body’s inbuilt defense mechanisms is known as immunology. The 
collection of cells, tissues, and organs that together attempt to resist foreign invaders 
and restore normalcy in the event of injury is the immune system [4]. The players 
involved include various cells, soluble factors, tissues, and organs, making this study 
an interdisciplinary one. The average lifespan of infectious diseases is rising, and 
researchers now believe the inborn immune components are much less versatile than 
we once thought [5]. The high-dimensional, unstructured nature of data with more 
noise is a computational burden that paves the way for AI to be included in immuno-
logical proteomics. AI holds all the necessary tools to increase the performance of 
analyzing, storing, interpreting, and actuating the mined complex data into pure, 
useful insights, giving us a new perspective and a better edge over the age-old stan-
dard computational times and strategies [6]. The key Contribution of this chapter is 
as.

• This chapter identifies the potential of AI application in the context of genomics, 
serology, and immune monitoring in the case of vaccine development.

• Further, integrated approaches of AI adoption with immunological concepts 
can contribute to the efficacy of vaccines and several other immunotherapies. 
We acknowledge that there are some limitations to the adoption of AI in 
immunological research.

• Additionally, the correct application of AI for disease vaccination purposes 
requires resolution of challenges such as the generalizability of AI vaccines, 
explainable AI, ethical and data sharing concerns, and AI model integration with 
immunological concepts, all of which are discussed in further detail.

• We close the chapter with an overview of opportunities and future developments 
that are on the edge of translational immunology. 

The rest of the chapter is organized as follows. Section 9.2 elaborates on the AI-
based applications of Immunology. In addition, AI-based techniques for Immunology 
to analyze Immune system models are categorized into ML-based and DL-based tech-
niques in the Sect. 9.3. Section 9.4 details compared to analyze the merits, demerits, 
and limitations in each category of existing AI model for immunology. Future direc-
tions and opportunities of AI-based techniques are in Sect. 9.5. Lastly, the concluding 
remarks and future directions are sketched in Sect. 9.6.
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9.2 Applications of AI in Immunology 

Artificial intelligence (AI) has the potential to significantly improve medical diag-
nostics and treatment [7, 8]. This concept can certainly be applied to the field of 
immunology for numerous exclusive benefits. There are a significant number of 
applications currently emerging that involve using AI in the field of immunology. 
This section aims to explore these different areas and discuss how, in particular, AI 
might have the capability to assist in the immunology of the future [2]. 

Application Areas of AI in Immunology One of the most proposed advantages of 
utilizing AI in a medical context is the potential for an increase in diagnostic rates and 
disease prognostication. Enhancing and providing a more robust explanation for the 
data analytics that occur in the background can achieve this. The ability for machines 
to have smooth and consistent data provision is likely to bring data analytics higher 
in terms of accuracy and coverage [9]. Drug discovery and development has been 
another major area into which AI has been invested. The combination of AI and drug 
discovery aims for an increase in the gravitational pull for a particular candidate drug 
of interest. An enhancement in yield is produced if a client-liaised approach between 
the companies and the involved patients can be established. An immense need for 
personalized medicine has planted roots in today’s world, and this phenomenon is no 
exception. In this highly customized age, industries are exploring a novel and niche 
approach to personalized medicine. Cells in the body have a very unique immune 
status, and there is a trend to investigate most of the abnormalities from these very 
immune-compatible cells [3]. In the context of personalized medicine, therefore, 
cells could be classified in accordance with the immune program within them. AI, 
if harnessed, could potentially be used to revolutionize personalized medicine and 
develop devices or software that diagnose the immune profile of a patient and classify 
these cells based on the unique immune program that belongs to them. This machine 
learning technology can be applied to human cells, animal cells, etc., in order to 
diagnose the disease. In conclusion, there are many exciting projects in the field 
of AI and immunology. The predictions are very promising in this area, and the 
applications are limitless. From the bench to the bedside, AI has the potential to 
forever change the face of healthcare [2]. 

9.2.1 Disease Diagnosis and Prognosis 

Artificial intelligence (AI) has been extensively applied in disease diagnostics and 
prognosis, a domain known as medical diagnosis [10, 11]. In immunology, such 
techniques allow for the analysis of complex and multidimensional data extrapo-
lated from immunological tests, patient history, and physical exams so the prognosis 
can be taken one step further for immune-related diseases. Inside AI, a considerable 
number of techniques have been described, including generative models, feature 
selection techniques, and a wide variety of machine learning (ML) and deep learning
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(DL) approaches, which aim to enhance the capability obtained from simple pattern 
or marker analysis [12]. Diagnosis improves diagnostic accuracy or enhances the 
performance of a diagnostic protocol. As a prognosis starts when a disease marker 
is identified in a diagnostic scenario, we describe all diagnostic techniques, irrespec-
tive of the AI approach, here in this subsection. There are already multiple studies 
available where different ML and DL algorithms were used to diagnose a disease 
based on clinical or omics data. AI has even been applied in predicting infection or an 
autoimmune-like disorder in the early or latent stages of a disease [13]. AI systems 
have the potential to be developed and implemented directly into a professional’s 
workflow in computer-assisted diagnosis systems [14, 15]. This integration could 
help clinicians make more definitive decisions, based not only on the information 
they gather but also on the results of tests or procedures conducted by AI. Ideally, 
such a system could allow a combined diagnosis to see the patient’s test results and 
the generated diagnosis using artificial intelligence [13]. 

Researchers have used AI to identify and validate a panel of biomarkers in the 
blood of children or adults that can be used to diagnose a systemic condition, 
and studies of periodic blood-based protein levels in patients using bioinformatics 
methods have shown AI can predict either a patient’s level of symptoms or disease 
progression. IDD diagnosis can still be improved, and working AI systems with the 
ability to directly impact the field of immunology will need to be released. One AI 
approach can hold the potential to revolutionize traditional diagnostic practices [16]. 

9.2.2 Drug Discovery and Development 

Drug discovery and development is a costly and lengthy process. Artificial intelli-
gence algorithms provide new approaches to analyze vastly available techniques that 
can identify small molecules and candidates. AI programs, including deep learning, 
can analyze larger sets of data to make the data analysis more accurate and efficient 
due to the lack of important datasets to be trained, to study drug mechanisms quickly 
and more economically, and hence to provide a better output [17]. The integration of 
these concerns with the new data also reduces the implemented algorithms of data 
into the strong requirements for computational power. Companies are developing 
large datasets to extend their usage in their workflows. A few examples showcasing 
the successful application of these approaches in discovering immunotherapeutics 
include AI technology developed in collaboration with a member of the Roche Group 
[18]. Nevertheless, AI algorithms have been recognized as one of the potential multi-
factorial design considerations for drugs. Major challenges of the application of AI 
approaches in this domain pertain to the quality of the data. The current data available 
for treatment and drug development, as well as operational and clinical data, could 
be integrated into a single patient file [19]. Moreover, most clinical data are textual 
records that express the doctor’s decisions, which are characterized by social, organi-
zational, and individual contexts. However, identified research opportunities in this
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domain include the development of deep learning AI approaches in patient immu-
nity profiling and personalized drug therapy, where immune responses are measured 
on a single subject visit time series with good dependent variables. Ethical chal-
lenges in AI applications concern automated drug design and treatment, including 
the responsibility for developing drugs, distributive justice, and test versus control 
subjects’ decision-making [20]. In contrast, AI applications in design could auto-
mate recommendations that will accelerate method development, and the decision 
is supported by the investigator’s intuition for a more effective study. In conclusion, 
AI and machine learning have very promising roles in expediting multiple advances 
in drug design and treatment. The transformative potential, benefits, promise, and 
success of these tools in drug treatment and trials are increasingly concerning the 
integration of AI/ML tools into designs to improve their efficiency for testing or to 
reduce their costs [21]. 

9.2.3 Personalized Medicine 

Personalized medicine is an attempt to use data from individual patients to guide 
disease treatment. In the case of immunology, immune responses vary widely 
between individuals. AI tools can be used to detect detailed immune responses in 
vaccinated individuals or detect sophisticated immune responses to infection [22]. 
Personalized immune-based drug treatments may involve the integration of various 
types of data such as genomic data, plasma or serum biomarkers, and data on tumor 
biology. Physicians treat patients individually based on the results of these tests. For 
example, by genetically detecting people who have impaired interferon responses 
and are thus likely to suffer from persistent, chronic, and debilitating infections 
and those who may respond with autoimmune symptoms to vaccines [19]. A similar 
approach has been proposed to optimize response to pharmaceutical countermeasures 
and exposure to viruses (The Applications of artificial intelligence in immunology 
is shown in Fig. 9.1).

Personalized medicine strategies are likely to be more complex, less intuitive, 
and more high-risk than traditional clinical practice [23]. Nevertheless, the treat-
ment of immunotherapy in the field of immune lung cancer is closer to a personalized 
medicine strategy based on extensive genetic and molecular diagnostics. Case studies 
of personalized immunotherapies that use genetic immune response data to identify 
patients to exclude or functionally activate in patients exposed to anticancer check-
point inhibitor therapies support the feasibility of the concept. AI and ML tools can 
also integrate and help predict and guide the effects and outcomes of complex person-
alized immunotherapy strategies. AI can therefore be considered to support decision 
science in personalized medicine to overcome the problem of the low number of test 
patients. Importantly, having access to and using individual health and gene data to 
develop personalized therapies also raises privacy and ethical concerns, as well as 
direct commercial use [19, 23].
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Fig. 9.1 Applications of 
artificial intelligence in 
immunology

9.3 AI Techniques and Models in Immunology 

Artificial intelligence techniques, which are primarily used in immunological studies, 
mainly depend on the objectives of the studies. To process the existing complex 
and multifactorial immunological data, most studies are based on supervised, semi-
supervised, and unsupervised learning algorithms. Additionally, machine learning 
techniques are widely used to elucidate interactions, changes in subpopulations, and 
patterns [13]. For the analysis of high-dimensional immunological data, deep learning 
architecture is utilized, including different types of CNN, RNN, autoencoders, and 
GANs. These AI models capture different types of features according to the study’s 
priorities. As a result, the selection of best-fitted algorithms depends upon the tasks 
to be performed. The successful improvements in immunological research achieved 
via AI-based approaches are significant [24]. 

Therefore, it is crucial to select a suitable model according to the objective of 
the study. The list of more complex models, such as CNN, RNN, autoencoders, 
and GANs, requires additional consideration regarding the model design, param-
eter tuning, evaluation, computation, and reporting parts, particularly in the studies 
conducted for bench-to-bedside treatment discovery [25]. Immunological data is 
mostly high-dimensional and noise-oriented, requiring efficient analyses through 
sparse feature learning models, factorization-based models, nonlinear-based models, 
neural network-based models, ensemble-based models, and unsupervised models, 
depending on the subdomain type and size of data, and challenges. There is a strong 
desire to gain translatable AI-based knowledge required to understand host defense 
and infectious diseases, autoimmune and inflammatory responses, and immunore-
sistance development. As a result, the future direction suggests the selection of 
AI model types, with support from surrogate system models, for the promotion of 
immunological research [25, 26].
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9.3.1 Machine Learning Algorithms 

Enormous work has been done in developing data analysis and prediction tools 
using machine learning in immunology. Machine learning algorithms essentially 
work by learning patterns underlying the given input data and making predictions 
or discovering new insights from them. The algorithms can be broadly categorized 
into classification and regression methods, which are widely used in immunological 
studies as well. Classification techniques are used to categorize or position the data 
into specified classes or clusters and have also been applied to the prediction of new 
disease diagnoses. Examples of classification algorithms are decision trees, support 
vector machines, k-nearest neighbors, ensemble methods such as random forests, 
and neural networks. Regression, a supervised learning algorithm that finds the rela-
tionship between independent features and dependent outputs, is also used in quanti-
tative modeling in immunological studies to predict outcomes such as drug response 
and patient survival, personalized treatment. Feature selection is often performed 
to eliminate irrelevant or redundant features in machine learning models, which are 
important in immunological applications [13]. 

Many reviewed papers discuss the application of various classifiers in different 
areas of immunology. Machine learning models have not only been used in different 
areas of immunology to make new findings and discoveries, but have also been 
applied in clinical studies where data from real-world clinical settings have been 
utilized to improve diagnostic precision, patient stratification, and facilitation of 
personalized medicine [27]. The application of artificial intelligence algorithms in 
solving diseases has been thoroughly reviewed, which underlines the application 
of artificial intelligence, including machine learning models, in the diagnosis of 
diseases associated with immunology such as asthma, hepatitis, AIDS, tubercu-
losis, and cancer, as well as the search for new drug targets and compounds [28]. 
However, the challenges associated with translational value in the feature space and 
the ongoing research should be addressed in future to make more robust and accurate 
immune system disease prediction models. In addition, data normalization and data 
bias are also key challenges in the application of machine learning in immunological 
classification problems that should be paid attention to [29]. 

9.3.2 Deep Learning Architectures 

Deep learning, a subfield of machine learning, is an artificial intelligence archi-
tecture that learns layered representations of input data. Through neural networks, 
deep learning can identify essential characteristics of complex and specialized tasks, 
thereby allowing researchers to understand previously obscured layers of immuno-
logical data. Initially, deep learning is fed input data. Inside the neural network, the 
input data is transformed into different and highly specific forms using several math-
ematical operations [30]. As the operation is performed consecutively, mathematical
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operations rarely imitate the handmade form as the previous model architectures 
for artificial intelligence, known as artificial neural networks, and other models. 
Many of the complex characteristics of the immunological data must be evaluated 
with the original data after the completion of the output layer [31]. However, the 
intermediate results are considered to have the most important characteristics that 
reflect the functional information of the immune system. Therefore, deep learning can 
reveal functional immunological characteristics in body fluids and tissues or spatial 
immunological structures and immune molecular patterns by capturing corrected 
data required for further immune analysis [32]. 

There are many models in deep learning, and some are used in immunological 
fields. Notable in immunology, deep learning methods of image recognition tasks use 
convolutional neural networks. CNNs have been incorporated in numerous commer-
cially available software packages that are capable of providing powerful and accurate 
quantitation for stained slides [33]. While numerous CNN-based models exist, very 
few have been used for applications in immunology. CNNs have demonstrated signifi-
cant improvement in diagnosis and prognosis in various fields, including meningioma 
classification, skin cancer recognition, breast cancer subtyping, and prostate cancer 
detection. However, the most influential and widely recognized deep learning model 
in the medical field is natural language processing-based transformers, which are 
used for the analysis of medical records, inferring relationships between diseases, or 
for predicting the clinical outcomes of patients [34]. Although such examples are very 
rare in the field of immunological research, this is likely to become a focus for future 
studies. Despite its usefulness, deep learning has certain limitations. Because deep 
learning is deeply connected, the model may only capture patterns in the training 
dataset, and deep learning may require a large amount of reference data [35]. In 
certain cases of deep learning, a larger number of related studies are required to yield 
improvements for immunological data such as genomics and biomedical images 
regarding the limited number of specific immunological and clinical data. 

In terms of practical applications, however, there is still little existing research 
that uses ANNs or deep learning for immune analysis [36]. Generally, there is little 
ethical controversy, but it often accompanies excessive benefits and restrictions, 
particularly in medical, diagnostic, and disease treatment fields; the interpretability 
of poor results is associated with ethical risks. Interpretation in immunology and 
cancer investigation is highly significant; deep learning in immunological analyses 
holds potential and is expected to have a significant impact. As the deep learning 
model becomes more sophisticated and larger, the application of deep learning and 
immunology is expected to further expand [37]. 

9.4 Challenges and Limitations of AI in Immunology 

To conclude, although AI presents ample opportunities to explore the immunolog-
ical landscape, there are numerous challenges that must be overcome in order to 
realize these ambitions. The production of high-quality human immunological data is
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currently limited and hence restricts the creation of reliable AI models. The modeling 
of biological systems is also complex and unique to each patient due to epistasis. In 
addition, integrating AI into clinical practices is problematic due to the resistance 
among many practitioners to this new technology [38]. Various ethical issues also 
need to be resolved, such as patient data privacy in addition to bias in the models. 
Regulatory procedures for AI, particularly in a clinical context, have not yet been 
solidified and hence constitute an additional barrier to widespread use. Some even 
suggest that the spotlight on AI may be exaggerated and premature given the string 
of recent failures of AI models across various industries [39]. There are various 
subdomain of Immunology as shown in Fig. 9.2. 

Given the obstacles that have been highlighted, the ambition to run immunological 
studies through AI is a tough sell. Despite the advances that have been made in the 
application of AI to immunology, we see no foreseeable future where AI can replace 
traditional immunological studies, at least for the next 10–15 years [40]. However, 
this does not mean there is no place for AI in the field. More realistic goals include 
patient stratification using a combination of AI, genomics, and proteomics, as well 
as predictions of treatment responses with disease progression based on medication 
intake and lifestyle or environmental factors. These tools, when combined, could

Fig. 9.2 Subdomain of immunology 
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inform practitioners as to the prognosis of their patients and hence inform therapeutic 
decisions, representing a more realistic and feasible future for AI in immunology [18]. 

9.5 Future Directions and Opportunities 

We see several future possibilities created by AI to revolutionize the fields of 
immunology and immune-mediated diseases. Large volumes of complex data are 
increasingly generated in immunology from genomics, epigenetics, single-cell anal-
yses, and other advanced technologies. AI will be increasingly utilized to facilitate 
efficient data analysis and deep learning, assist in experimental design, enable appli-
cations for more personalized medicine, and serve as an integral part of drug and 
diagnostic discovery [41]. Real-time predictive analytics to enhance patient care 
management and provide precise and optimal drug or therapy mining for autoim-
mune diseases, cancer immunotherapy, immune monitoring, or vaccine design are 
some conceptual predictions of where future AI applications can be widely devel-
oped [25]. We believe that the major advance in AI innovation is expected to come 
from interdisciplinary crossover between AI experts, machine learning, robotics, and 
experts in immunology, together with the formulation of immune theory and immu-
nologists. Investment in AI for immune-related medicine and healthcare, including 
companies working on designing predictive clinical AI, using AI to mine immune-
mediated diseases, as drug detection, and inventing AI-based detection kits, may 
again provide high returns on investment [24]. 

Immunology and related diseases are becoming an increasingly important part of 
healthcare worldwide. Given the vast amount of information currently available, the 
emergence of AI in the field of immunology is of great significance, and the outlook 
is optimistic. In close collaboration with clinical immunologists, AI has the potential 
to greatly enhance the application of basic and clinical immunology research and 
improve the diagnosis and treatment of various diseases in future. Globally, there 
are also opportunities for the establishment of interdisciplinary immunology-driven 
AI and healthcare research consortia or a network of global research communi-
ties with this shared interest. These alliances among AI engineers, artificial intelli-
gence institutes for immune-related human disease, and immunological experts in 
the field can work toward generating dynamic discussions, spreading knowledge, 
and experience in this very unique cross-sectional opportunity to further develop 
the proposed applications to enable medical practice in future. The conception of 
future crossover interdisciplinary research agendas can also provide a platform for 
joint worldwide grant applications in AI data mining for immune-related diseases. 
Development of professionals and educational programs in AI and machine learning 
for immunopathology is essential to meet the growing medical industrial needs 
for the future. It can also provide new international career opportunities and long-
term training in interconnected areas of imaging and clinical immune pathogenesis 
[25, 40, 41].
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9.6 Summary 

In closing, the potential of AI in immunology is transformative. If used in the right 
way, it can further some of the great clinical progress achieved in recent years. 
Building useful machine learning models, applying deep learning to image clas-
sification, and searching for patterns in omics data at scale are just a few of the 
evidenced successful applications of AI in immunology. The promising research 
emanating from these projects ought to be matched by responsible innovation. Since 
the integration of AI into complex immunology models is rife with technical, ethical, 
and adoption challenges, a more in-depth diagnostic survey and an assessment of 
the ongoing state of AI integration is needed to identify the pervasive challenges and 
provide a unified view of the landscape across disease states. 

Early investments in the computational foundations required for such AI-first 
models, best practices for integrating AI into scientific processes, and exploration 
of the efficacy of the AI-standard immune health promotion vehicles on patient 
outcomes are the essential next steps. Finally, this work should only be done in an 
environment of interdisciplinary collaboration across immunology, computational 
science, ethics, and regulatory disciplines. Immunology stands at a pivotal cross-
section where AI could be deployed across a range of available data, methods, and 
application areas. There are, without doubt, limitations and a need for improvements 
in both the data and methodology. Moreover, proving clinical utility is hard, and 
ethical, and micro- and macroeconomic models of implementation are not to be 
neglected. Still, progress is being made in the reconstruction of more complex models 
capable of accommodating much of our molecular understanding. Immunology is 
potentially one of the great fields of application for AI, given the proper imperatives 
to define questions and develop methodology. However, it represents a spectacular 
challenge to machine learning developers. 
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Chapter 10 
Managing High-Risk Surgery Using 
Artificial Intelligence 

Abstract High-risk surgical procedures concern complex surgical procedures 
requiring substantial postoperative care, such as those in cardiothoracic, urosurgical, 
and neurosurgical disciplines—in particular, those involving medical significance 
or the perception of elevated associated risk. Due to rapidly rising healthcare costs, 
research into recent medical advancements has been expedited by pressure from 
national and economic factors to provide an explanation of entitlement to tax-funded 
service suppliers. Quality assurance management systems have been implemented to 
serve as an adjunct to the development of high-performance healthcare systems. Arti-
ficial intelligence is currently being developed and applied to all aspects of medicine 
with improvements in computational ability. AI might be an important contributory 
element due to its expertise in deciphering text and images, especially concerning 
surgeons who enter into the tougher excision results for diagnostic classification 
purposes. However, any AI application helping in important surgical procedures 
necessitates a strong accreditation strategy that supports qualified professionals’ 
concerns regarding the effect of peripheral hyper-regulation and de-scaled protection, 
also ensuring that a technology adherer can comply with new professional require-
ments and encourage the proliferation of already scarce surgical specialists. High-risk 
surgical processes are tailored here to these issues, which are capital-intensive and 
profoundly affect patient outcomes. We maintain that AI technologies are built as 
a ‘third operating hand’ to support mental and physical exercise, and not as inde-
pendent research systems. Every move to build private surgical processes must also 
follow AI regulation, including current legal health regulations. 

Keywords High-risk surgery · Surgical assistance · AI in surgery · Smart 
operating rooms · Robotic-assisted surgery · Surgical automation
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10.1 Introduction 

Surgical robots have become an irreplaceable equipment in today’s operating rooms, 
thanks to their skillfulness. They are widely applied in operations that are at high 
risk of high postoperative complications or surgery difficulties, such as in thoracic 
surgery, delicate hepatopancreatobiliary and minimally invasive surgeries, assisting 
in the operations [1]. With the assistance of these intelligent technologies, patient 
safety can be effectively improved. The reoccurrence of disease could be reduced, 
concurrent co-magnetic of complex operations could be avoided, and the psychiatric 
pressure of young surgeons can be relieved that stems from the heavy load of practice 
learning. These advantages make artificial intelligent robot-assisted surgery high-risk 
operation patients elective [2]. Currently, robots operate in a manner of “imitation” 
rather than “thinking”; however, the story takes a turn in the world of Artificial 
Intelligence (AI), as AI-based robots are the “main characters”, equipped with their 
distinct advantage, with the capacity for “thinking” [3]. It is more interesting to 
discuss how AI is incorporated to assist these robots performing their operations 
[4]. As a newly-emerged field, surgical AI addresses capturing the capabilities of 
the latest advancements in bioinformatics and biomedical computation that could 
provide suggestions to verbalize insights, diagnostic, or procedural performance of 
surgical robotics systems, while bearing the specially-developed clinical practice 
guidelines and engineering standards in mind. Although augmented by the most 
advanced clinical and engineering technologies, it is challenging for surgical AI to 
achieve a fully autonomous intraoperative surgical procedure, which also ignites a 
rebound discussion on the unique role of individual surgical robots [5, 6]. 

10.1.1 Background and Significance 

The beginning of the twenty-first century has seen the rise of a dynamic, globally 
connected technology and services-based economy propelled by digitization and 
telecommunication. Despite the now daily experience of virtual meetings, much of 
the genuine disruptive changes toward such a connected economy are still on the 
finance, create, transfer, operate, and monetize information and knowledge [2]. In 
healthcare, even the simplest disruptive technologies based on the combination of fast 
web-based access to molecular diagnostic kits, fast electronic processing of sensor’s 
biomedical readings, and web protocols and rights management to have the diagnosed 
data being processed and the results being sent back within a relatively short time 
space are still not deployed [7]. Although it is possible to combine high-performance 
diagnostics with the currently very established non-invasive surgery, this leads to 
ambulatory or even real-time surgeries in an operating theater environment with 
immense benefits [8]. Only the speed of service and the lack of economical models 
leveraging the low-cost access to the process to support the pioneer establishment 
of robotic systems at very high service costs. To support critical argumentation on
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the effectiveness of surgery, some concepts must be agreed upon to comprehend the 
role of surgery in healthcare [9]. 

Surgery continues to be the central and decisive form of therapy for most cancers. 
Although substantial progress has been made in the development of anticancer 
drugs and radiotherapy, successful outcomes from surgery still remain essential in 
most cases. To avoid recurrence/metastasis and to improve the overall prognosis 
for patients with cancer, radical en bloc resections are required when possible [10]. 
In addition, successful and assiduous minimally invasive surgeries are necessary to 
ensure the firm establishment of more than 20 years’ progress in endoscopic diag-
nosis and biopsies, as well as various other endoscopic diagnoses. Unfortunately, 
since 1965, curricula thin fiberscopic technologies have not had significant continual 
progress in enabling endoscopic diagnosis, biopsy, and surgery to be combined and 
conducted in a single board-certified non-invasive machine like endoscopic diagnosis 
and biopsy [11]. 

10.1.2 Purpose and Scope of the Study 

This research aims at developing a model to assist high-risk surgery using artificial 
intelligence (AI) techniques such as deep learning and big data. In the developed 
model, data from intelligent medical devices will be collected and analyzed, as well 
as existing patients’ data from medical diagnostic images already known, which can 
reflect therapeutic outcomes in order to reduce the risk of re-exploration and improve 
prognosis [12]. The intelligent medical device is composed of existing biosensors, 
biochemical sensors, and an AI software program [13]. The AI software program will 
be able to early detect abnormal signs and symptoms of the patient by monitoring 
changes in patients’ information and inform the healthcare provider of the results in 
a timely manner. This device can bring both instant improved quality of treatment 
and convenience for patients and healthcare providers, being an eco-friendly medical 
device. The first solution was that the biosensors were 3D printed for easy application 
to the body [14]. For the second solution, commonly used biosensors (Pulse oximetry) 
and the method of applying the peripheral venous lines were included in order to 
create a more comprehensive solution [15]. Needed high-efficiency materials were 
determined for each solution. The results of the pre-experiment were validated to 
confirm the excellence and compatibility of the results. The 3D printed sensors and 
applications were presented. Finally, the value and limitations were discussed for 
commercialization [12]. 

This research aims at developing a model to assist high-risk surgery using artificial 
intelligence (AI) techniques such as deep learning and big data. In the developed 
model, data from intelligent medical devices will be collected and analyzed, as well 
as existing patients’ data from medical diagnostic images already known, which can 
reflect therapeutic outcomes in order to reduce the risk of re-exploration and improve 
prognosis [16, 17]. The significant theme mentioned in the Purpose and Significance 
of the Study chapter was expanded in this study. The latest research and progress at
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• • •

Fig. 10.1 Challenges in high risk surgery

home and abroad related to this theme were mentioned in an introduction chapter, 
and the foundation of the theory was introduced in a matter chapter. Moreover, this 
study was expected to make a positive contribution to the sustainability of healthcare 
policies by using big data and AI, as per an expectation chapter. The key contributions 
in this chapter are as follows: 

• The risk factors that lead to the chances High Risk Surgery occurrence are elabo-
rated in detail to provide awareness pointers in order to prevent its spread among 
humans.

• We have discussed applications of AI-assisted Surgery, Limitations of traditional 
methods and advantages of AI assisted High Risk Surgery.

• Emphasizes the importance of AI based surgery, Ethical and legal considerations 
and innovations for AI-assisted surgery. 

The rest of the chapter is organized as follows. Section 10.2 elaborates the back-
ground and current challenges for AI assisted High risk surgery. In addition, Appli-
cations of AI-based surgery, image analysis detection and robots assisted surgery are 
discussed in Sect. 10.3. AI based Decisions, results, Improved Precision and Accu-
racy and advantages of AI in high risk surgery. Ethical and Legal considerations, 
Patient Consent and Autonomy, Liability and Accountability Issues are discussed 
in Sect. 10.5. Future trends and innovations in AI assisted surgery are mentioned 
in Sect. 10.6. Lastly, the concluding remarks and future directions are sketched in 
Sect. 10.7 (The Challenges of high risk surgery is shown in Fig. 10.1). 

10.2 Current Challenges in High-Risk Surgery 

Even though technical assistive devices and technical surgical procedures are harmo-
nized during surgery, patient clinical status during surgery varies with the volume 
lost for replacement, and therefore these patient parameters should be adjusted.



10.2 Current Challenges in High-Risk Surgery 239

Analyzing the surgical video, each patient has a unique video preoperative and intra-
operative profile [18]. However, each patient has both enjoyable periods recognized 
by decreased parameter deviation and unforeseen circumstances, leading to over-
whelming workload. The anesthesiologist team must increase patient safety control 
quickly. Artificial intelligence for medical purposes is considered in the era of anes-
thesiologist support [19]. It is expected to provide information for better decision-
making in variable patient clinical situations, based on high level performance both 
in intensive care unit monitoring and surgical condition assessment. 

Facing high operative risk and struggling against time to save life during surgery, 
technical surgical skills are crucial. But many factors can unexpectedly influence 
surgical outcomes. Not all patients with the same acute disease need surgical inter-
vention [20]. On the other hand, the difference in the quality of technical skills among 
surgical team members becomes evident during surgery, in terms of ease and time 
to accomplish key parts of the surgery with less bleeding. Currently, selection of 
patients for high-risk surgery and the choice of surgical team for high-risk surgery 
are not standardized [21]. Focusing on medical practice in developed countries, a 
new approach using artificial intelligence in this surgical decision-making problem 
to better inform both patients and doctors is needed. Here, we explore how frequent 
surgical complications that emerge during high-risk surgery are intertwined with the 
technicalities of the surgical procedure and the patient’s clinical situation from a 
general surgical specialist perspective and propose directions for future refinement 
of practical artificial intelligence support [20]. 

10.2.1 Risk Factors and Complications 

While human beings are prone to test error, fatigue, or stress, among others, machines 
are less deficient in many of these areas and their performance level is consistent 
over time depending on their programming. Although machine-learning models do 
make mistakes, they are less likely than human errors when the technology is well-
maintained and parameters of operation are obeyed. While the concept of placing 
people’s lives in the hands of machines may be unattractive to some, it’s still important 
to remember that humans designed methods, set their requirements, and instructed 
them in their tasks [22]. AI will allow healthcare professionals to develop different 
technologies to help improve patient outcomes with the implementation of supportive 
computer programs through transforming the structure of their jobs. These technolo-
gies will create opportunities for health professionals to work in a supported role in 
a manner that allows for consistent best care [19].
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10.2.2 Limitations of Traditional Surgical Techniques 

Despite the significant improvement and advancements in both anesthesia and 
surgical techniques during the last decade, they cannot ensure a zero-risk inter-
vention for patients. As I stated above, a considerable number of patients face a 
high-risk surgical intervention. Those are cases where the high-risk is mostly due 
to the specific clinical condition of the patient and concerns mostly two points. The 
one is the general condition and functionality of vital organs (heart, lungs, liver, 
kidney, etc.), while the other refers mostly to the circulatory system itself due to 
stenoses, ruptures, malfunctions, etc. of arteries [23]. This is a case where Artificial 
Intelligence can make a significant additional contribution, allowing the vascular 
surgeon to ensure a higher level of intervention with a minimum risk, especially for 
the functionality of major organs during the operation. In this chapter, after the first 
assessment of the AI in surgery itself, an analysis of the high-risk surgical interven-
tions is made, while research conducted during the last years for scientific research 
and prototypes concerning the role of AI in aortic surgeries in an AI-oriented society 
is presented [24, 25]. 

10.3 Applications of Artificial Intelligence in Surgery 

Preoperative test prediction tools are developed to predict preoperative test results 
using individual patient’s information. These predictions can help surgeons make a 
more personalized surgical planning, lower the risks, or guide cautioning the post-
operative care. There are also various decision-making assisting tools. Instead of 
employing the general instant information during the surgery, these tools can provide 
more precise and individualized recommendations [26]. The other important group is 
the tutorial tools for simulation or guided surgery. Coordinative virtual environment 
software promotes group work within surgery to integrate information from recorded 
surgeries and provide advanced communication between the surgery team members. 
While many artificial intelligence technologies in surgery are introduced to optimize 
the surgical workflows by enhancing the four stages of data collection, data manage-
ment, data analysis, and data display, distinct artificial intelligence technologies may 
have distinct dominant stages in which they can demonstrate their unique benefits 
[27]. However, most of these technologies are still in the conceptual stages. With the 
rapidly expanding capabilities of artificial intelligence, they are expected to mature 
and be helpful for numerous surgeons presently. 

There are numerous potential applications for artificial intelligence in surgery, 
serving different purposes and administering to distinct parts of the workflow asso-
ciated with this specialty. The following paragraphs detail individual uses of the tech-
nology in surgery [28]. The existing correlation between these outlined uses provides 
a glimpse at one of the unique trends in surgery practice where artificial intelligence 
is more prominent. These assistive technologies are concurrently user interactive and
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automated, complementing and guiding but not substituting the surgeon. Some of 
these assistive tools even offer explanations that the surgeon can interpret, further 
empowering the latter to make a well-informed decision [29]. 

10.3.1 Image Analysis and Interpretation 

One of the best-known applications of AI technology in the medical field is the ability 
to analyze images to assist with diagnostic tasks [30, 31]. A good portion of current 
AI applications is used in various diagnostic methods, making predictions based 
on the available electronic data has resulted in significant advances in personalized 
medicine [3]. In high-risk surgeries, these methods have a smaller but still widely 
used role in the form of medical imaging and informative pre-operative counseling. 
Using MRI scans and other imaging technologies, AI can provide assistance with pre-
operative planning. Information provided by the AI can be used to weigh different 
techniques and individualize operative strategies before the patient arrives in the 
operating room [32]. A review of the recent impact on different AI imaging tools in 
high-risk abdominal incidentalomas surgeries has been studied in 2021. Collecting 
high volumes of data directly from patients as they move through the hospital can 
expand the data utilized by AI models [33]. Limitations of medical images include 
low reproducibility and weak correlation to objective functional parameters. 

10.3.2 Robot-Assisted Surgery 

Advantages of robot-assisted systems include magnification and stereoscopic vision, 
high-precision instruments, tremor reduction, wide range of movement, stable 
camera, minimal invasion, and reduced operator fatigue. The features of robot-
assisted devices are visual imaging systems; servo actuators; three-dimensional 
sensor; and either the data storage system, American Standard Code for Information 
Interchange (ASCII) interface, Universal Serial Bus (USB) interface, display; input 
systems or haptic interfaces [34]. The robotic surgical process consists of moving 
the robot to the location of the surgical site, placing the robot precisely where the 
incision is to be made to help the surgeon visualize the surgical site, and then make 
the incision while assisting the surgeon. 

Robot-assisted surgery is an application of robots. Robots are machines that 
can be programmed to carry out very complex personal tasks or can be manipu-
lated by general-purpose machines. Robots that assist surgeons are in the form of 
an articulated arm [35]. The robots have different roles in surgery; they include 
laparoscopic surgery, cataract surgery, orthopedic surgery, cardiovascular surgery, 
and many different high-risk and minimally invasive surgeries. The disadvantages 
that exist in robot-assisted surgery are the lack of dedicated training, the high cost of 
human surgery for initial testing, and easy access. As a result, surgeons need to be
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educated about robotic systems, which tools are best suited to their procedures, and 
how to support personnel in order to ensure effective robotic system use [36]. 

10.4 Benefits and Advantages of AI in High-Risk Surgery 

One of the surgeons who has studied the use of AI-assisted liver surgery most is Posi-
tano from the San Giovanni di Dio and Ruggi d’Aragona Hospital in Salerno, Italy. 
His experience is that the use of AI in high-risk surgery improves the likelihood that 
the patient will stay overnight in the ICU rather than having to stay there for a longer 
period [37]. AI-assisted high-risk surgery could mean a great advantage in terms of 
cost–benefit relationships. Researchers in computer science disagree to some extent 
with this rather optimistic finding from surgeons. They believe that improvements in 
the use of AI-generated imaging for the guidance of complex operations increase the 
likelihood of the patient having to stay overnight in the ICU, rather than the oppo-
site. They argue that improving clinical outcomes in the form of a higher number of 
patients being discharged from the ICU in the afternoon can be a side effect of AI 
that investigators, ethics committees, surgeons, hospital administrations, and payers 
perhaps should focus on more, i.e., the avoided complications and extra days in the 
ICU [38]. 

Artificial intelligence (AI) can be used to help surgeons in the planning phase 
as well as during the procedure itself. The AI is fed a large number of images to 
help it learn what the patient’s own anatomy looks like, which is then used to assist 
the surgeon in the operating room by providing guidance when the difficult, high-
risk sections of the operation are performed. It can be a way for the surgeon to feel 
more reassured and confident by making the ‘blind’ parts of the procedure ‘visible’ 
[39, 40]. 

10.4.1 Improved Precision and Accuracy 

High-risk surgery often necessitates reconstruction or curative treatment. This often 
involves procedures with a narrow margin for error, both in terms of the initial 
accuracy of the procedure and the subsequent timeframe. For example, if a new 
graft is not accurately joined during microvascular surgery, then blood flow must be 
quickly restored to the tissue to avoid ischemic damage. Or if a ‘marginal’ donor 
organ is not given away, the liver transplant must be completed within a limited 
window before the organ becomes unusable [41, 42]. AI’s inherent capabilities in data 
processing, pattern analysis, and real-time decision-making make it ideally suited 
to support precision and accuracy in challenging surgical scenarios. This can be at 
a coarse level through the automation of important pre- and intra-operative tasks, 
such as organ localization, resection, and suturing. At a more refined level, AI can 
also support the successful execution of tasks that might be possible for a user
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but which are highly sensitive to fatigue or stress-induced hand tremor, such as the 
accurate separation of co-joined vasculatures. Finally, AI can also help prevent errors. 
The introduction of advanced imaging modalities, such as embedded near-infrared 
fluorescent angiography to track blood flow, can provide valuable in situ guidance to 
ensure the intended outcomes of high-risk procedures are being achieved in a timely 
fashion [43]. 

10.4.2 Enhanced Decision-Making Support 

How can AI help individual complex, high-stress decision-making in high-risk 
surgical teams? Can we better provide each operating room’s team with the necessary 
information, confidence, and trust they need to effectively work together, in order to 
(if not to cure the disease) reduce the chances of possible critical care and long-term 
death and minimization of the patient’s family’s pain and suffering? In Appendix I, I 
describe HIPAA-safe procedures to appropriately develop and use specific hospital 
electronic health data records. A great opportunity provided by today’s electronic 
health record technology is the “check what’s needed” stage [44]. Today, it is possible 
to effectively learn from previously recorded results of what happens when experi-
enced human professionals create, say, the type of physical interventions on certain 
type each undergoing certain type initial after a certain type long-term. The first step 
is for prestigious and diverse medical domain expert confederacies to develop such 
custom-designed, essential datasets. Communication channels should include using 
private and public knowledge on favorite surgeon interventions and brands. Recall 
the famous line in Butch Cassidy and The Sundance Kid film about the danger of 
knowing real-time knowledge of the new Union Pacific safe. Such applications should 
be made to not only surgical team decision-making but also emergency department 
triage problems [45]. 

Can decision support systems enhance decision-making in high-risk surgery? For 
over a generation, it has been clear that experienced human surgeons, soliciting data 
from the patient’s case and historical outcomes with similar cases, can’t cover all the 
potential pathways and possibilities of further trouble. In the heat of the moment, 
psychology studies show we suffer from cognitive biases when facing risky deci-
sions [45, 46]. I might even call this the case that Mother Nature feels regret. The 
majority of talk and work in medical decision support systems is falsely focused 
on replacing the experienced human, who solicits advice when new and unexpected 
special circumstances or problems arise. Such a focus misses the opportunity to 
effectively support. For complex care such as high-risk surgery, recognizing, under-
standing, and accommodating these notable differences between different human 
surgeons are prime opportunities for AI and system-based tools [47].
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10.5 Ethical and Legal Considerations 

Moreover, in addition to these basic principles, other issues will be important for 
policy and regulatory purposes [48, 49]. There is not necessarily an alignment 
between personal legally held information and legally derivable data. It is impor-
tant that the majority of analyses from educated guesses are not instrumental in the 
discussion of change but are important to guide how the future unfolds. There is 
a need to develop different forms of supportive technologies to address what the 
best techniques are for human augmentation [50]. The well-being and dignity of 
the human person are highlighted as one of the first objectives of the international 
organization. It is not sufficient to argue that increased states are good instruments 
because they are getting better. The working group needs to work out a rationale that 
ensures human operations are not reproductive [51]. 

This research underlined the variety of ethical and legal considerations that are 
important in the development and integration of autonomous surgical procedures 
in the surgical theater. These considerations are important for ongoing progress in 
technology, the refinement of policy or regulatory responses, and the development 
of guidelines or best practices for surgical automation. It is important to build trust 
with patients and medical professionals [52]. These considerations are important for 
ongoing progress in technology, the refinement of policy or regulatory responses, and 
the development of guidelines or best practices for surgical automation. Transparency 
and the development of appropriate public dialogue are important to address the 
issues that arise. There remain substantial areas of difference across various health-
care systems over a number of these considerations without international consensus 
[53]. 

10.5.1 Patient Consent and Autonomy 

To the present time, the growth of health accession capabilities and health demo-
cratic awareness with AI has often been a disappointing failure; AI-based diagnosis 
is actually a frequently unreliable robust sensitivity, upgrades in supply techniques 
have, over the decades, created none of the actual technological knowledge speci-
fied, and state regulation impairments have privileged the technical destructions and 
prohibited acquisition resistance by the relevant human organizations. Contrast the 
unrealistic claims about the independent empowerment of AI-based operation due to 
infallibility with the Japanese operation disaster of the Kongo, which resulted from 
arrogant faith in the machine Infal [54]. 

Just as AI can impact patient accuracy, so can it be used to track whether a patient 
has really given valid, informed consent for a high-risk operation. AI can be used 
both to compare and contrast data recorded because someone has seen a doctor 
and believes a surgical situation requires immediate action, but the patient also said 
the operation data has the legal valid consent written. Even after demonstrating
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transmitted discussed issues in multiple-patient populations, it should be agreed that 
the best use of AI is in promoting the ethical and cognitive enhancement of human 
professionals [55]. 

10.5.2 Liability and Accountability Issues 

But again, AI liability is a very new territory that the current law is struggling to 
handle. There are also questions of how the law needs to be further developed to deal 
with these future AI issues. The liability should be legally designated to strengthen 
the performance of AI when put into use, as the company that has an increased risk of 
being sued is responsible for making sure that the AI passes safety tests. Therefore, 
the company involved may consider dedicating resources, software engineers, as 
well as psychiatrists, radiologists, CRAs, or MRIs, and compliance staff to reduce 
exposure to lawsuits [56]. 

In terms of liability issues, this will depend on how the physician views the AI. If 
they view the AI as a tool or virtual assistant, the physician shall bear the liability in 
the event that errors, malfunctions, bugs, or the like have occurred during the medical 
operation. However, if they view the AI as a trusted clinical diagnosis, whereby the 
responsibility of the operation lies on the AI, the AI may probably decide to opt for 
the best course of action [57]. As such, the AI and the company that created the AI 
could be held liable and accountable for the actions that the AI decided to take and 
implement. 

10.6 Future Trends and Innovations in AI-Assisted Surgery 

AI and machine learning can be applied to improve perioperative patient care and 
enable remote telemedicine. This success is achieved through mass-market connected 
sensors, smart home monitoring, and deep neural network virtual complication 
metrics developed from thousands of electronic health records for real-time assess-
ment and pre-disease prediction. Virtual reality, connected operating rooms, and high 
network bandwidth support the spatially aware mixed reality of AI and augmented 
human capabilities [58]. This relies on an ultra-low latency 5G private network 
combined with edge and cloud processing concepts to overcome the limitations of 
centralized cloud processing, such as the speed of light, packet overhead, and radio-
wave spectrum congestion [59]. This allows for remote high-power AI computing 
for the human cyber-physical systems who must make high-stakes decisions with 
blood on their hands, either inside or on the patient, at a specific time, place, and 
manner. 

Thus far, AI and machine learning applications have focused on pattern recogni-
tion tasks such as imaging, labeling, and predicting solutions using known methods
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(e.g., titrating medication or identifying complicated anatomical structures to opti-
mize device placement) [60]. They have also been used after surgery to plan robotic 
surgeries, including coordinating ports and placing arms. The potential for AI and 
machine learning extends to connected cyber capabilities, ranging from remote cloud 
computing to real-time sensing and commanding of AI within an augmented reality 
projected from remote access. This allows for the capture, embedding, translation, 
and display of vital signs from the body, the surgical environment, and virtual machine 
learning models directly into the surgical field of view [56]. 

10.6.1 Integration of Machine-Learning Algorithms 

With respect to surgery, a large portion of tasks ranging from image analysis in 
radiologic tests to preoperative evaluation of patients and even artificial intelligence 
(AI) to improve the outcomes of the surgery can be made better in the direction of 
personalized surgery support systems [61]. Since surgery is one of the last resolutions 
to maybe the worst problem that a patient encounters, personalized assistance and 
supportive systems should also enable such operations to result in the best possible 
outcome [62]. This section aims to discuss the role of artificial intelligence with 
an inclusive approach in the captioned surgery process in a comprehensive way 
[59]. Everyone or every organization knows that breaking the barriers created by 
the standard procedures will cost a lot of money and time; however, in the end, the 
gigantic gains will be taken over. 

In today’s modern world, it is not difficult to find the interaction of robots with 
humans with daily examples. If one looks forward, personalized systems that are 
tailor-made just for ourselves come into play. In this matter, the integrated system 
provides feedback and forth between two or more systems. In this way, personal-
ized systems that are integrated naturally with humans are made possible. With the 
advantage of fast digitizing world and the capability of humanity having an immense 
knowledge of data storage capacity, personalized complex systems that understand 
us, learn along with our interactions, providing us with their help will be implemented. 

10.6.2 Advancements in Surgical Robotics 

There has been a range of projects that aim to provide improvements to surgical 
robots, such as minimally invasive surgery, teleoperated fingertip control and manip-
ulation, and minimally invasive and natural orifice surgery [63]. Surgical robotics 
have been developed to enable minimally invasive surgery (MIS), which features 
small incisions, less trauma to patients, faster recovery, and lower postoperative 
complications in comparison to conventional open surgery. In the development of 
surgical robotics, several types of robot systems have been used in surgery such as 
RAS (robotic-assisted surgery), RAV (robot with augmented visualization), RAVS
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(robot with augmented visualization and semi-automation), and RPlanningV (robotic 
planning and virtual navigations with real-time visualization) [64]. Experimental 
results of the surgical robot have demonstrated intuitive RAVS capabilities and trust-
worthiness of the system for effective clinical use. The conducive use of the robot 
platform for MIS robotic surgeons and clinical translation enables the potentials of 
supplying worldwide high-quality, high-standard surgeons to expand the reach to 
emerging and low resource settings. By aiding the earliest stages of laparoscopic 
surgery, such a “robot-augmented” surgeon may democratize MIS for procedures 
such as cholecystectomy and appendectomy [65]. The benefits of robotic dexterity 
offer minimally invasive natural orifices trans luminal endoscopic surgery (NOTES) 
on the jaw, pharynx, lung, rectum, and vagina. Teleoperated miniaturized robotic 
surgeries (T-shaped robot, independent anchor hooks) and dexterous endoscopic 
options offering advantages like greater degrees of freedom of the joint and the distal 
tip of the instrument could be useful tools in the field of robotic surgery [66]. 

10.7 Artificial Intelligence in Medical Imaging 

Artificial intelligence (AI) techniques have taken an expanded position in various 
fields, including medical imaging. AI can perform a wide range of activities with the 
assistance of digital medical imaging, which comprises the automation of diagnosis 
and image analysis. By considering the various difficulties, AI has become more 
popular. For implementing AI with medical imaging, the computation needs to be 
performed at different stages [67]. AI performing with medical images requires 
preprocessing, feature extraction, segmentation, image post-processing, feature 
selection, and feature classification. Extracting features and performing multiple 
sequences will increase classifiers’ efficiency. This ensures that pattern recognition 
plays a predominant role in all medical imaging methodologies [68]. 

AI includes numerous methods for computer-aided identification and imaging 
interpretation. These various methodologies are used in medical imaging systems, 
such as computational methods and AI methods. Mainly, the studies utilize AI to 
expand the use of medical imaging methods, incorporate image databases, and 3D 
image reconstruction. Feature extraction methods are used to remove non-related 
low-frequency values and enhance the image potential. The various extraction tech-
niques used in medical imaging are also dependent on the nature of the medical 
images and the type of object to be segmented. Preprocessing techniques can 
greatly improve the intrinsic performance of image processing tasks such as image 
restoration, feature extraction, feature enhancement, and noise reduction [69].
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10.7.1 Overview of AI in Healthcare 

In healthcare, AI is referred to as using complex algorithms and software to emulate 
human cognition. AI is articulately deployed in the healthcare field. Machine 
Learning (ML) and Deep Learning (DL) are two substantial categories used to create 
AI models. ML deals with searching and analyzing data using statistical methods. 
ML models are capable of recognizing hidden patterns within the database [70]. 
ML can be divided into three groups: supervised, unsupervised, and hybrid learning. 
The supervised model implements input-output pairs using a ground truth dataset. In 
unsupervised learning, novel properties and relationship structures are accounted for. 
In the hybrid method, it involves both the techniques of supervised and unsupervised 
learning [71]. 

Deep Learning is a universal method used in computer vision and image recog-
nition. One of the favorable aspects of DL over ML is that it can effectively handle 
large and complex data. The complex dataset has a deep learning model. Convolu-
tional Neural Networks (CNN) are a popular form of DL techniques. CNN captures 
spatial and temporal patterns across images; these patterns are also known as high-
level features of the images. Training an AI model requires large datasets and expert 
service support to build high-quality models [72]. The development of such software 
must reach validated metadata, follow explicit rule standards, and handle sensitive 
and interpretable high-quality data. Nowadays, AI has transformed healthcare and 
revolutionized it with a drastic increase in data. The AI model identifies poten-
tial cells for specific areas such as cancer detection, cancer treatment, and diabetic 
complications [73]. 

10.7.2 Applications in Medical Imaging 

Deep learning-based models are reinventing medical imaging procedures. The 
conventional imaging-based diagnostic methods suffer from several shortcomings, 
prompting a rethinking of their formulation for quicker and more accurate diag-
nosis. However, the burden of sifting through a volume of medical imaging files 
for grasping subtle and sometimes imperceptible visual clues remains dominant. It 
seems that the golden phase of radiomics and texture analyses is rapidly exhausting 
patience as well as our big data acquisition capability [74]. The AI community is 
finding in generative adversarial networks, as well as deep learning-based neural 
networks, particularly CNNs, an unopposed power substrate to complement radi-
ological advancements. CNN is indeed unleashing the full potential of a wave of 
revolution in making computer-aided diagnostic capabilities a reality for robust inter-
pretation of medical imaging, ophthalmological examination, clinical pathology, and 
finally radiological reporting [75]. 

Artificial intelligence (AI) has made its pioneering footprints in the domain of 
medical image capturing, storage, and transmission by helping medical experts view
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health disorders in a natural and easy way. The human visual system is dumbfounded 
with the tasks of aggregating, integrating, synthesizing, and interpreting the surface 
visual structures of an anatomic plane as well as their color composites to achieve 
correct visualization answers. AI-based computational models are currently dupli-
cating the visual interpretational capacity of the human visual system, sometimes 
even surpassing it [76]. 

10.8 Conclusion and Recommendations 

At this point, the unnaturalness brought about by the simulation evaluation is part of 
the technical development process. However, due to cost, accessibility issues, ethical 
and safety oversight issues, and other factors, the current simulation system is not 
widely used and cannot effectively assist the surgeon’s re-education and training. 
Therefore, providing tools that can improve surgery with feedback systems, restoring 
touch, and simulating tactile information integration will be very meaningful. Touch 
feedback will allow artificial intelligence to fully assist the surgeon in completing 
any procedure or any step within the operation. 

Surgical handheld robotics is the first clinical application of artificial intelligence 
in digital surgery. It has opened a new era for digital laparoscopic surgery, allowing 
surgeons to perform high-precision and reliable operations at a low cost. It is of great 
significance for surgeons to use handheld surgical robots more efficiently to carry 
out training, and it solves a long-standing construction problem of digital surgery -
loss of touch. The fact that no touch has been considered necessary when developing 
digital surgery tools has created problems for many surgical techniques that are 
highly dependent on touch, ultimately leading to a lack of tactile input during digital 
surgery. This will affect the quality of surgery, increase the difficulty of surgery, and 
ultimately affect the effect of surgery. This will be transformed when surgeons learn 
to perform delicate examinations or palpation skills, visualize the endoscope based on 
the digital platform, and use the surgical robot to perform high-precision dissections. 
We believe that it is now possible to restore touch and further digitize one or all 
of the surgical procedures within the framework, and artificial intelligence trained 
based on touch function is becoming closer, performing real-time feedback to help 
us obtain surgical feedback data and data fusion in the surgical area weapon-wheel. 

10.9 Summary of Key Findings 

Fortunately, the majority of AI uses in surgery are the assistance of expert and 
experienced surgeons and support their decisions. High-risk surgeries specific AI 
algorithms can play an indispensable role in assisting surgery. With the help of AI 
algorithms, the preoperative preparation of surgeons and doctors can be dramatically 
improved. Using AI assistances, high-risk surgeries can be considerably shortened
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and the complications can be dramatically reduced. These are enacted thanks to 
the fact that AI can analyze, perceive, and comprehend complex and large data 
sets more effectively compared to humans. Patient care has to be individualized 
and molecular biology will play a more important role in this sense. AI technology 
will support solving the problems such as personalized patient care, preventative 
approach, individualized planning also in before and after surgery periods, and 
contribute to personalized surgery in all aspects. 

Artificial intelligence (AI), a technology that mimics certain functions of the 
human mind, also has the potential to play an important role in surgery and the 
consolidation of the surgery. AI systems are producing useful tools and applications 
and in future, there may be future AI-assisted and AI-directed autonomous surgeries. 
To this end, surgeons should become aware of the effect of AI and learn the necessary 
knowledge and skills for surgery. 

10.9.1 Recommendations for Future Research 

Given that high-risk surgery may have a huge impact on individual outcomes and 
costs, it is rare that research has been conducted into machine learning interventions 
in this field. We present an exploratory report about the potential utility of predictive 
models designed to ease the transition toward high-risk surgery. When present, the 
studies mainly concentrated on the use of traditional statistical methods and analyses 
used to develop said machine learning models. However, the evidence is insufficient 
to outline the impact and incentives for using such predictive models in clinical use. 
Such a standard would pave the way for valuable decision-making resources for 
patients, families, and doctors, thereby offering society important clinical benefits. 
Despite the great strides that have been made in the last century in surgery, it is 
still among the most dangerous procedures. Surgery has helped numerous human 
beings worldwide but high-risk operations sadly increase the risks and place strain 
on healthcare providers and their money. Recent advances in AI have taken us to the 
cusp of unprecedentedly predictive power, and researchers are quick to investigate 
how this may affect surgery. In this report, AI is herein presented in the context of 
high-risk surgery to assist surgeons. Until now, AI has contributed little to high-risk 
surgery. Future study should concentrate on how modern technology can lower the 
threat of high-risk surgery when being closely integrated with clinical workflows. 
This includes on how to make predictive models that are readily programmable in 
EPRs.
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Chapter 11 
Benchmark Datasets for Analysis 
in Medical Systems 

Abstract One of the vital areas within medical systems analysis is the benchmark 
dataset. Currently, many related research fields are using AI methods for more accu-
rate and quicker diagnosis, prognosis, and generalization in many areas such as 
neurology, cardiology, retinal image processing, and so on. To make a decision, 
we need accurate data to support our analysis. Consequently, we need to consider 
performance and decide more efficiently. There are many neurological disorders, 
ranging from neurodegeneration to trauma, or other related pathologies, in which all 
of these illnesses have their own sub-type disorders. However, we will treat a patient, 
and most treatment will be either cognitive or medicinal therapy after we diagnose 
the disorders. The fundamental operations for disease analysis are image labeling, 
preprocessing, and feature extraction from a given dataset. In addition, after we have 
the dataset for each type of related disease, we will apply image regeneration-based 
techniques to learn the main principal components, reduce overfitting, and possibly 
improve the classification methods. We provide detailed benchmarks for subse-
quent analysis, namely diagnosis and prognosis for fatty liver classification, diabetic 
retinopathy, different neurological disorders, various mood disorders, cardiac-related 
treatment courses, and initiating early strokes and survival analysis. The paper is 
structured as follows: we briefly provide an overview of related data and method-
ologies for each dataset. The paper presents results of a series of benchmarks of 
different datasets in medical systems. The dataset is obtained from different sources 
and medical image data based on different diseases like strokes, diabetic retinopathy, 
and also based on spatial domain image data for neurological behavior diseases. It 
offers a performance analysis including precision, recall, F1-score, and the AUC of 
a machine learning paradigm. The result indicates a general trend in most of the 
datasets. 

Keywords Benchmark datasets ·Medical datasets · Healthcare data ·Medical 
data repositories · Public health datasets · Standardized datasets · Electronic health 
records (EHR) · Disease classification · Patient health monitoring · Predictive 
modeling ·Medical image analysis · AI model evaluation
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11.1 Introduction to Medical Data Analysis 

Today, the requirement for a proper medical data analysis technique has been recog-
nized as critical to the success of diverse healthcare systems. It can handle (1) the enor-
mous amount of medical information gathered from assorted sources such as clinical 
practices, bioinformatics, and imaging functions, delivering data styles for facili-
tating prognosis and treatment following specialized education and narrow research, 
(2) big data analytics for shedding light on genes and environments invoking diver-
gent reactions in human biology, and (3) free medical records obtained from natural 
clinical practices that applicants cannot systematically manage for scientific anal-
ysis purposes. Accordingly, there exists an urgent call for data analytics where the 
amalgamation of required characteristics of the practice and measurements of patient 
parameters from many hospitals is not feasible with just one. Data extracted from 
diverse domains play a crucial role in developing enhanced healthcare with improved 
quality services [1]. 

Currently, medical data sets are numerous from diverse bioinformatics appli-
cations and other physiological and biomedical systems. New data resulting from 
advancements in technology and empirical valuation with detailed bibliographies are 
important to guide development in the desired direction. In addition, a huge amount 
of data collected for research purposes also includes public, federal, clinical, and ill 
patients, which constitutes a subset of the healthy population and hence shows less 
valid identification of patterns. As such, investigators find it hard to contribute to 
one whole, mainly because of the volume and quality of the data sets. Hence, the 
need for benchmark sets for new comparative research is a must. Many of the tools 
for prognosis, diagnostics, risk prediction, and clustering have already appeared in 
the recent past for the alliances of diabetes. Moreover, a relatively large number of 
tools and methodologies for diabetes prediction have appeared in the last few years, 
and the majority do not justify or appreciably cater to any significantly different 
application [2]. 

11.2 Importance of Benchmark Datasets in Medical System 
Analysis 

Benchmark datasets are becoming more crucial for the analysis of medical systems. 
As a result, research has attained a degree of standard in developing new methods 
and algorithms. Benchmark datasets are required to evaluate a variety of applications 
making use of medical systems. Both their importance and potential applications are 
discussed. The study is intended to persuade the medical community to produce more 
quality benchmark datasets for researchers in any area to use. A medical data-based 
methodology for creating benchmark datasets is also described. 

At the heart of extensive research, the importance of reproducibility and compa-
rability cannot be overstated. Benchmark datasets aid in the quantification of various
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medical systems for the purposes of evaluating algorithms and methodologies. As a 
result of the availability of these data, numerous applications and techniques have 
been able to compete against each other. Additionally, benchmark datasets help 
researchers develop more advanced algorithms and techniques. Benchmark datasets 
play a vital role in the training of deep learning models and ensure the development of 
more accurate and improved models [3]. To substantiate these viewpoints, we must 
continue working and looking for new advancements in medical systems. A recom-
mendation is provided as the final point: a plan to upgrade and change the present 
benchmark datasets in order to match the latest medical devices or systems. In order 
to detect medical systems training and validation, it is important to update the bench-
mark databases frequently, as the efficacy of some equipment changes according to 
their updates [4]. Researchers will no longer require a large amount of data to collab-
orate and develop deep and intelligent systems as a result of these databases. Data 
acquisition for medical monitoring devices must always be done ethically in order to 
protect the privacy of patients and researchers. It is critical to maintain patient values 
and norms when designing these new database frameworks. Ethical considerations 
can alter and reflect a person’s situation or where they are living. In the near future, 
it is hoped that researchers will validate and repair problems in benchmark research 
through these datasets. Real-life applications, such as prediction or disease diagnosis, 
could be made more cost-effective or efficient. New techniques and applications are 
required to accomplish this. We need to continue to make advances in order to keep 
up with these disease prediction strategies [5]. 

11.3 Overview of AI Applications in Medical Diagnosis 
and Prognosis 

The modern healthcare sector is marked by an advance toward the use of artificial 
intelligence (AI) as a tool for the improvement of clinical decision-making. Among 
the numerous areas of data-driven applications, machine learning and its special case, 
deep learning, are widely used primarily in diagnostic and prognostic modeling tasks. 
The application of AI techniques to medical tasks is aimed at enhancing diagnostic 
accuracy, reducing the time of obtaining a final diagnosis, and increasing disease 
detection sensitivity and negative test conversion. The number of AI applications in 
medical decision support is continuously increasing [6]. AI technology has demon-
strated state-of-the-art performance on numerous tasks, improving validity and short-
ening the time of analysis of medical tests of different natures, from microscopic 
image cancer screening to ECG evaluations. Several case studies have demonstrated 
the capability of AI technology to outperform the greatest clinicians on specific 
medical tasks in terms of diagnostic accuracy [7]. Among various approaches to 
AI, deep learning, a subfield of machine learning, is making AI accessible to a 
broad range of applications with substantive potential for societal impact. Its prime 
strength lies in its ability to automatically detect features from raw data. Despite its
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immense potential, deep learning also brings its own set of challenges, particularly 
when moving to real-world settings, especially in medicine where the ethical use of 
AI should be crucial [8]. 

11.3.1 Neurological Disorders and Mental Illness Diagnosis 
and Prognosis 

Diagnosis and prognosis of mental and neurological diseases is very complicated 
[9]. Currently, for clinical diagnosis and treatments, the evaluation of symptoms, 
clinical organization, cognition, metabolic status, brain physiology, brain anatomy, 
and genetic tools are used. The diagnosis of multiple neurological and psychiatric 
diseases is important for choosing the right treatment, estimating the disease progres-
sion, and distinguishing the causes of the symptoms accurately. The diseases are 
actually multifactorial complexes where the symptoms overlap and the individual’s 
brain anatomy and physiology of a normal individual show various alterations during 
the execution of the same task. Despite the complex nature of mental and neurolog-
ical diseases, and to develop predictive algorithms possibly considering the brain 
age, many studies have tried to classify subjects from functional, structural, and 
fMRI images with good generalization performance across different datasets, labo-
ratories, and countries according to cognitive measures related to classifications in 
order to develop predictive and personalized diagnostic tools for clinicians [10]. In 
the following, we give some examples of diseases that should be investigated in 
terms of structure, function, and connectivity for developing benchmark datasets to 
identify the disease in the early stages before advancing to the point where they 
become irreversible in terms of treatment. There are different mental and neuro-
logical diseases, and each of them needs to be investigated in a separate study for 
developing benchmark datasets in terms of structure and function to be used for 
training (or testing) more accurate diagnostic methods. Diseases where many people 
face the diagnosis and prognosis include Alzheimer’s disease, Parkinson’s disease, 
Huntington’s disease, autism, attention deficit hyperactivity disorder, schizophrenia, 
major depression, bipolar disorder, PTSD, traumatic brain injury, epilepsy, obses-
sive–compulsive disorder, Tourette syndrome, and severe anxiety. The following is 
the average age of onset and prevalence per year from major disorders. Correct diag-
nosis may help to treat people and manage the symptoms in order to effectively 
control them [11].
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11.3.1.1 Key Challenges in Neurological Disorders and Mental Illness 
Diagnosis 

Automated Diagnosis in Neurological Disorders and Mental Illnesses: A Critical 
Analysis of Benchmark Datasets; Evaluating the diverse range of manifest symp-
toms and formulating a diagnosis is one of the greatest challenges in neurolog-
ical and mental illness conditions. Often, observers need to classify symptoms into 
various disorder categories, for instance, motor disorders, mental illness symptoms, 
comorbid symptoms, and symptoms of functional loss. Subjective interpretation 
of symptoms is inevitable, except for a few that are diagnosed objectively with 
specific biomarkers [12]. However, for most of these types of diagnoses, no defini-
tive biomarkers or parameters are available for objective diagnosis. It is also seen that 
manual interpretations often lead to interobserver variability and misinterpretation 
due to bias errors. Additionally, some pertinent factors complicate disease diagnosis, 
including the stigma of mental illness, which requires precise diagnostic decision 
formulation to avoid subjective biases. The availability of poor drug targets also 
necessitates specific diagnosis. 

One feasible way to provide a precise basis would be to create a collective effort of 
experts in the fields of neurology and psychology, along with the addition of patient 
history as an important interdisciplinary approach to make accurate diagnoses of 
mind-brain-sensorium conditions. The need for objective, continuous, and real-time 
examination of evolving mental disorders is currently being enabled using radiolog-
ical imaging techniques, supported by other advanced tests including biochemical, 
electrophysiological, and cardiovascular assessments [13]. Various tools have been 
used in the field, including clinical scales and screening questionnaires that are used 
in primary and secondary care to distinguish among neurological and mental illness 
conditions. On the other hand, cognitive assessment tools for diagnosing mental 
disorders have been developed systematically to adhere to psychiatric comorbid 
assessments at the bedside. It is evident from the current literature survey that most 
existing diagnostic tools are suicidal psychometric evaluation techniques. These are 
often seen as self-reporting and interview questionnaires that loosely differentiate 
among affected persons and groups, or specifically, any two similar categories. This 
is sufficient to predict the disorder type or category. In future, comprehensive data 
mining techniques and artificial intelligence applications will play important roles 
as advanced decision-making tools for disease diagnosis [14]. 

11.3.1.2 Benchmark Datasets for Neurological Disorders and Mental 
Illness Analysis 

In systems dealing with neurological and mental health diagnosis, it is of utmost 
importance to have an external validation of the outcome given by the systems. 
Access to benchmark datasets is the main hub in diagnostic algorithm development, 
where several pathologists diagnose diverse diseases in relation to clinical or imaging 
supervised assessments aiming at a medical curriculum. Benchmark datasets will
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ensure the reproducibility between different experiments and algorithms that claim 
to diagnose the illnesses or disorders of interest, facilitate early detection of patients 
who are possibly developing the disease, and might lead to personalized therapy, 
predict the treatment outcome, and promote collaborative algorithm development, 
among others. There is no free large dataset of brain tumors in pediatric patients; in 
that context, public repositories can be used, focusing on data of children with brain 
tumors [11]. 

A huge number of public websites offer numerous datasets; they are partially 
listed for reference purposes. Some datasets are available with patients’ clinical 
assessments and imaging files, and others have an extensive range of available data 
with readily downloadable genetic information. Intellectual disability and attention-
deficit hyperactivity disorder assessments are not within the gender or touchstone 
analysis public datasets and usually have a relatively low number of assessments 
in the ones found [15]. This is probably due to the complexity of the diagnostic 
process and patient confidentiality constraints. However, sufficient image uploads 
for the comparison of algorithms can be found online. In contrast, cancer data usually 
have tens of thousands of highly curated patients for benchmarking deep learning 
algorithms, but validity constraints [13]. 

11.3.2 Brain Tumor Prediction Using Brain Imaging 
Segmentation 

Prediction of tumors in the brain is one of the most significant studies in medical 
applications [16]. On investigating the entire literature, we find that the details present 
on tumor prediction through brain imaging are limited. This could be an inoperative 
source or matter, and we suggest that only a few publications have worked exten-
sively on tumor prediction. Tumor detection and prediction are done with the help 
of segmentation of the contributed abscess in preoperative and postoperative brain 
imaging. Segmentation of predicted biopsy collected data from an MR image report 
is the need of the pathology for detecting the tumor separately. Several studies have 
attempted brain imaging for tumor prediction by using classification or prediction 
models. The principal contribution behind choosing brain imaging is its primary 
function [17]. It appears to confirm persistent symptoms and is a rather essential test 
result that provides detection of infarction, tumor, and other abnormal activities of 
bleeding to guide evidence-based treatment. The human brain is imaged with the 
help of diagnostic imaging techniques like MRI and CT scans. Segmentation is also 
preferred in the medical imaging reports through the data of computational brain 
imaging segmentation since normal patients can differ in different report scans [18]. 

Classifications or models that predict the tumor are mainly dependent on single 
or multiple imaging modalities. There has been interest for more than a decade 
in using magnetic resonance imaging to improve tumor segmentation. There is 
significant clinical interest in recent years in MR and CT imaging for developing
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statistical atlases of normal human brain anatomy and quantitative assessment of 
brain tumors. The prominent five main modality units responsible for the exami-
nation of MR are T1, T1-weighted, T2, T2-weighted, T1c, and T1-weighted post-
contrast. The segmented masks consist of whole brain, white matter, gray matter, 
tumor cyst, edema, necrosis, and tumor-enhancing lesions for relevant classifica-
tions. Several studies support independent model predictions, random forest classi-
fiers, and multiple features with reduced modality, achieving 91–97% accuracy of 
a large dependent classification model. Medical data implies that integrating clin-
ical data and imaging data sets may yield better predictions than multi-dimensional 
systems; clinic computed tomography data was fused with imaging data sets, and it 
showed enhanced model data, resulting in better results and accuracies. Research in 
neuroimaging has now shown tremendous interest in further brain tumor studies that 
combine clinical and molecular data [19, 20]. 

A large number of recent neuroinformatics spectroscopy writings and pharma-
cogenomics therapies enable active machine learning and analog methods research. 
Convolutional neural networking or deep learning for topology such as UNet can 
detect and search and design the intensity of the lesions. For example, U-adds can 
have pre-and post-fused modalities to improve complete search results, and high-end 
models increased testing response in a day model. If this model is pre- and post-fused 
MRI imaging using MRI CT scan that is known for the last complete tumor and brain 
management, it can help the model learn the name of search areas and further improve 
search accuracies. This involves artificial intelligence and aids in transforming the 
patient’s treatment plans [19]. 

11.3.2.1 Significance of Brain Tumor Prediction 

The prediction of brain tumors, being one of the most common tumor sites in the 
body, is of paramount importance. Although brain tumors are relatively rare, their 
high morbidity and mortality pose major public health challenges. The prognosis of 
brain tumors is very poor because the tumors grow very rapidly and the surrounding 
structures of the brain are affected by the tumors. In such cases, early intervention 
is essential to save the patients. The choice of treatment modality depends on the 
complete grading of the brain tumor tissue. The availability of efficient brain tumor 
prediction methodologies in the clinic is the need of the hour. Early detection of 
brain tumors is the key to saving patients’ lives because the 5-year survival rate can 
be improved with surgical procedures. When growing in the major portion, there is 
a high possibility of impacting the patient’s personal abilities. These psychological 
imbalances can be well managed and can avoid such strain by providing predictive 
capabilities if we plan to save the brain tumor patient [18]. 

The prediction of brain tumors is the clinical challenge facing most brain tumor 
clinicians. The CNN model with the VGG-16 architecture achieves the highest clas-
sification. It is possible to get clearer details, diagnostics, and accurate predictions 
of brain tumors using AI and MRI features. Prediction of brain tumors can avoid
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unnecessary operations and save patients’ lives. We need to standardize the predic-
tion protocols used in medical systems, whether they are experimental or analyzed 
in an actuarial technique. The balance of increased patient satisfaction and care is 
affected by the knowledge of relevant outcomes and predictions. For fair and ethical 
reasons, it is important to recognize any vulnerabilities related to the trivial size 
associated with brain tumor patients when designing such predictive models. New 
strategies to improve care quality need to be discovered so that informed decisions 
can be made [17] (Table 11.1).

11.3.2.2 Benchmark Datasets for Brain Tumor Prediction 

The datasets containing brain tumor imaging information are collected from different 
hospitals and various imaging instruments. Their wide range of variations has impli-
cations for pathological diagnoses and treatment plans. To make a reliable evaluation, 
benchmark datasets were developed. These benchmark datasets include data from 
one or more hospitals and also include different magnetic resonance (MR) imaging 
video sizes and different diagnoses. They contain both preprocessed data such as 
T1c, T2, T2-Flair, pre-Gd, and GD-transformed tumor images such as T1. Normative 
datasets also include some clinical parameters, data sources, and data timestamps, 
which can better test and analyze the data. Researchers have formed several robust 
benchmark datasets as an overview of the key hurdles such datasets are required 
to be distinguished. This includes the absorption of multimodal images consisting 
of various imaging sequences along with clinical parameters associated with brain 
tumors [28]. 

Each dataset is prepared to make the process of data analysis robust rather than 
scattering different datasets from distinct sources in order to illustrate the advanced 
domain in conjunction. Each dataset provides a different set of instructions according 
to the scope of a dataset. Some datasets include data varying with respect to age and 
diagnosis for a single group of patients at a single hospital. Other datasets include 
different patients from other sources. Importantly, these datasets differ in size and 
consist of 2D and 3D data. Some of these datasets were established in the past decade 
to include the most comprehensive imaging data in the medical field. The advanced 
models that predict the body part of the dataset can be evaluated [29]. 

The need to improve predictive techniques and their models in the brain tumor 
field has led to the creation of several datasets. Nowadays, despite the presence of 
different collections, they assist in one or several tasks such as disease classifica-
tion, survival analysis, habitability prediction, tumor segmentation distribution, and 
surgical therapy. Many new complementary collections that appear in two or more 
tasks are not yet public in nature and are being continuously investigated and dupli-
cated by other professionals. In our current dataset, in contrast to the view of previous 
datasets, the path that distinguishes the centers and tumor types in the case of multi-
center data was also used to find a basis for analyzing data from multiple centers. 
Also, comparable global sums of abnormal tumor systems are given at small tumor 
points. New significant progress has been made in building unique ground facts that
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Table 11.1 Description of brain imaging datasets 

Datasets Dataset type Number of samples Key features 

BRATS (Brain Tumor 
Segmentation 
Challenge) [21] 

MRI scans 3000 + Multi-modal images, 
tumor annotations 

Patient types 500 + Gliomas and 
meningiomas 

TCIA (The Cancer 
Imaging Archive) [22] 

Brain tumor images 10,000 + Various imaging 
modalities 

Clinical data Varies Includes associated 
patient metadata 

CAMP (Cancer and 
Aging in Male 
Patients) 

MRI scans 500 + Focus on aging-related 
tumors 

Patient demographics Available Includes age, gender, 
and treatment data 

Brain tumor dataset 
(Kaggle) [23] 

MRI images 500 + Labeled images of 
tumors 

Class labels 4 Type Includes benign and 
malignant tumors 

Multi-modal brain 
tumor segmentation 
[22] 

Multi-modal images 1000 + T1, T2, Flair 
modalities 

Annotations Available Segmentation masks 
for training 

NCI Genomic Data 
Commons (GDC) [24] 

Imaging studies 20,000 + Includes clinical and 
genomic data 

Tumor types Various Covers multiple 
cancer types 

OASIS (Open Access 
Series of Imaging 
Studies) [25] 

MRI scans 1000 + Focus on aging and 
dementia 

Patient information Available Include demographic 
data 

IXI dataset [26] MRI scans 600 + Multi-modal imaging 

Annotations Limited Mainly for research 
use 

DICOM from RSNA 
[27] 

DICOM images 1000 + Rich clinical imaging 
data 

Metadata Available Includes patients and 
study information 

DeepLesion [22] Medical images 32,000 + Includes brain and 
other lesions 

Annotations Available For segmentation and 
detection tasks
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not only exclude those facts but also have a look that is still open. The new datasets 
have the potential to identify the patient as multi-integrated trust signals in hospi-
tals and to have an exceptionally large palm configuration measurement data source. 
More than 10 doctors have been asked to assess the integrated multispectral images 
of such good hand data for the complete statistical stroke treatment for thousands of 
patients [19]. 

11.3.3 Predicting Diabetic Retinopathy Using Retinal 
Imaging Segmentation 

Diabetes is the leading cause of blindness, with the number of people facing vision 
loss being 1.1 billion. Diabetic retinopathy, a general complication of diabetes, is 
asymptomatic in the initial stages. As a result, detecting diabetic retinopathy in 
advance of clinical symptoms is essential to controlling it [30]. We categorize the 
methods of retinal imaging to identify diabetic retinopathy based on fundus photog-
raphy, identifying the mild and severe stages of the disease over angiographic modali-
ties. Using retinal imaging techniques, we consider the usefulness of captured images. 
This imaging is extracted from multiple signs into a technique called retinal imaging 
segmentation and reconstruction [31]. 

Retinal imaging can diagnose diabetic retinopathy, but until now, the predic-
tive capability of the diagnosed retinal changes to those involving diabetes has not 
been established. Many trials of the segmentation method of retinal imaging back-
ground and retinal imaging segmentation technique behind diabetic retinopathy are 
presented. Researchers perform the task of classifying diabetic retinopathy by super-
vised learning following a retinal imaging digital enlargement signal. Segmentation 
may produce a disease-related area that is more accurate in detecting subtle disease 
and improving the system’s interpretation regarding the characteristic features after 
separation. Segmentation has been a trend in the process of detection for the identifi-
cation of changes in pathology, so it is concluded that the performance level reaches 
a prediction value of 99%. The right timing or concept is needed for the implemen-
tation of the signal available in the previous segmentation method. However, the 
proposed method developed in this chapter does not detail the segmented area as the 
main focus of further capabilities to improve the system [32]. 

11.3.3.1 Understanding Diabetic Retinopathy 

Diabetic retinopathy (DR) is a common microvascular complication of both type 1 
diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). The pathophysi-
ology of DR is a complex system of retinal inflammation, vasculature, and neuronal 
damage. Chronic hyperglycemia is the prime stimulus for vascular changes in the 
retina, classified as either microaneurysms or compromised circulation. Prolonged
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hyperglycemia first dilates the blood vessels; however, the walls of the vessels become 
cauterized, leading to capillary occlusion. This leads to hypoxia-inducible factor-1 
activation within the retina, aiding in angiogenesis via VEGF, which creates both 
neovascularization and vascular leukostasis. Nonproliferative stages were described 
and later expanded based on initial severe levels of grading. Four stages were recog-
nized, from minimal to severe, and proliferative DR was further classified by severity 
and risk of vitreous hemorrhage for prognosis [33] (The description of CVD diabetic 
retinopathy dataset is in Table 11.2).

The actual prevalence can be higher because a significant proportion of diabetics 
remain undiagnosed. Diabetic patients have about a 2% annual risk of becoming 
blind. Because of the reversible nature of early microaneurysms, it is important 
to detect capillary dilation in the early stages of the disease; therefore, healthcare 
providers recommend annual exams to detect early signs of DR. Photocoagulation 
treatments such as argon or xenon laser and, recently, pharmacologic therapy with 
VEGF inhibitors have been used to reduce macular edema and loss of vision by 
promoting the regression of pathological fibrovascular membranes. The current stan-
dards of care are the most effective in treating the vision-threatening consequences of 
DR and rebleeding. Moreover, systemic anti-VEGF drugs may even alter the natural 
history of DR by not only being a therapeutic treatment but also a diagnostic tool in 
early prediction [43]. 

11.3.3.2 Benchmark Datasets for Diabetic Retinopathy Analysis 

Analysis of disease focuses on the computer-aided prediction and diagnosis of several 
eye-related diseases, including diabetic retinopathy. To validate the robustness and 
accuracy of the developed predictive model, many researchers use public data as 
benchmark datasets. Thus, several benchmark datasets for the analysis of diabetic 
retinopathy have been made available. These datasets not only offer a standardized 
set of ground truth but also relatable data favoring the detection model when the 
researcher aims to develop a prediction model [44]. 

The development of new diabetic retinopathy datasets is essential because they 
offer diverse, high-quality image data and relevant clinical information. This dataset’s 
clinical data provide a patient’s medical history, including diabetes status, with addi-
tional ocular diagnoses giving a comprehensive analysis of risk prediction factors. 
Owing to the fact that focus is shifting toward the computer-aided prediction of 
disease, it is critical that retinal images and eye exam results are not only collected 
consistently from different medical institutes but also that firmware upgrades and 
new conventions in imaging are conducted. The annotations for diabetic retinopathy 
datasets are produced by employing a multicriteria system approach [45]. This is the 
approach used by various datasets designed for diabetic retinopathy. The databases 
designed to assess retinal fundus images with regard to the presence of diabetic 
retinopathy are available for public use. The datasets are organized and updated 
to promote public health by encouraging research and publications in the devel-
opment of automated algorithms for the detection of diabetic retinopathy. Sharing
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Table 11.2 Description of CVD diabetic retinopathy datasets 

Datasets Dataset type Number of samples Key features 

Kaggle diabetic 
retinopathy detection 
[34] 

Fundus images 35,000 + Labeled for stages 0–4 

Image resolution 3000 × 3000 High-quality images 
for analysis 

DRIVE (Digital Retinal 
Images for Vessel 
Extraction) [35] 

Fundus images 40 Includes annotations 
for vessel 
segmentation 

Annotations 1000 + pixels High-resolution masks 

STARE (STructured 
Analysis of the Retina) 
[36] 

Fundus images 400 Contains a variety of 
retinal conditions 

Annotations Vascular and lesion 
masks 

Detailed structure for 
analysis 

EyePACS dataset [37] Fundus images 88,702 Diverse patient 
demographics 

Image resolution Varies Images from various 
sources 

APTOS 2019 blindness 
detection [38] 

Fundus images 4000 Labeled for stages 0–4 

Image resolution 2048 × 2048 High-resolution for 
detailed analysis 

RetiSpec dataset Fundus and OCT 
images 

Varies Multi-modal imaging 
data 

Annotations Varies Comprehensive labels 
for conditions 

OCT (Optical Coherence 
Tomography) dataset 
[39] 

OCT images 3000 + Useful for 
cross-modal analysis 

Annotations Varies Segmentation labels 
for various conditions 

Indian Diabetic 
Retinopathy Image 
Dataset (IDRiD) [40] 

Fundus images 5000 + Labeled for 
segmentation and 
classification 

Annotations Available Detailed masks for 
lesions 

MESSIDOR (MEdical 
Screening of Diabetic 
Retinopathy) [41] 

Fundus images 1200 Includes images for 
training and validation 

Annotations Available Annotations for 
diabetic retinopathy 
features 

RETINA image database 
[42] 

Fundus images Varies Includes multiple 
conditions 

Annotations Available Labels for various 
retinal diseases
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retinal images is a global effort and goes beyond national boundaries. Government 
bodies and private organizations have been funding public health research by sharing 
the dataset within the scientific community [46]. The availability of the dataset is 
an essential real-world condition, and the success of public health depends on the 
automated systems in place. In this section and the following subsections, we review 
various datasets and clinical analytics applications on fundus images. We also review 
the publicly available databases for diabetic retinopathy across the world in various 
repositories. 

11.3.4 CVD Risk Stratification Using IVUS Imaging 

Cardiovascular disease (CVD) remains one of the major causes of death worldwide 
and demands systematic risk stratification. The presence and degree of atherosclerotic 
burden are crucial for risk estimation. A study has been designed to investigate the role 
of high-resolution imaging and advanced computation in predicting future cardio-
vascular events in low to intermediate risk individuals with subclinical coronary 
atherosclerosis. This imaging approach allows the acquisition of detailed real-time, 
precise, high-resolution cross-sectional images of the artery wall and direct visu-
alization of patterns of atherosclerotic modifications, wall-lesion interactions, and 
arterial function, particularly in the coronary arteries where arterial wall distortions 
and motion artifacts may occur less frequently [47]. 

Effective risk stratification tools are needed in order to identify patients at high 
risk of cardiovascular events who truly deserve medical therapy to prevent silent 
myocardial infarction (MI). Indeed, event prediction with a single risk factor in light 
of weak benefits from preventive therapy is less important. A variety of methods 
are commonly used to leverage imaging data, including physician examination of 
artery images, manual or computer-aided measurements of arterial dimensions, echo 
signal interpretation, or computation based on various metrics derived therefrom for 
multi-group or individual measurements. Combining clinical and imaging findings 
has been of increasing importance in clinical patient management and could predict 
future ischemic events when patients undergo coronary angiography [48]. Generating 
a full patient profile integrating clinical, laboratory, carotid fine B-mode echo, and 
imaging allows for refined ischemic risk prediction in medium and high-risk patients. 
Developments regarding plaque composition in non-culprit coronary arteries might 
predict culprit lesions when moderate predictors are already elevated in a heterozy-
gous familial hypercholesterolemia population. Moreover, B-mode echo combined 
with artificial intelligence confirmed the predictive role for future ischemic events of 
carotid remodeling evolution in a follow-up clinical trial in which normal to prevent 
coronary artery disease was examined. In diabetic patients, who are at increased risk 
of cardiovascular events, plaque strain rate assessing mechanical properties in culprit 
and non-culprit arteries was able to predict 36 months for plaque rupture extensions, 
clearly linking positively to the vascular system. More frequent updates are gradually
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proposed in which machine learning was employed to better refine the clinical risk 
of cardiovascular events during the broader follow-up [49]. 

11.3.4.1 Cardiovascular Diseases and Risk Stratification 

More than 80% of citizens of economically developed countries worldwide die of 
cardiovascular diseases. CVD occurs in different forms, and coronary heart disease 
and stroke are the most common. Today’s advanced diagnostic capabilities enable 
timely diagnosis and the development of appropriate treatment strategies. It is essen-
tial for medical specialists to identify patients at both low and high risk of CVD. The 
smaller the probability of developing the disease, the more circumspect and cautious 
specialists should be about starting preventive and treatment procedures, balancing 
potential benefits with possible ill effects. In contrast, a more severe patient prog-
nosis requires a more accurate analysis of the patient, as well as changes in their 
daily habits and lifestyle [50]. One of the major patient risks in developing CVD is 
considered to be the presence of various cardiovascular risk factors contributing to 
the deterioration of metabolic and functional parameters [51]. 

From a clinical perspective, the most important factor for the development of the 
stratification strategy and the selection of the optimal treatment is the risk of adverse 
CVD outcomes, such as cardiovascular mortality and morbidity. Achieving high 
sensitivity and specificity in these pathologies is the primary role of long-established 
traditional cardiovascular risk factors; for example, hypertension, diabetes, hyperlipi-
demia, and cigarette smoke have played a key role in the assessment of atherosclerotic 
cardiovascular risks over the past three decades. The final stage of the atheroscle-
rotic process, as well as the most recent and decisive step for cardiovascular conse-
quences, is an acute critical event: the plaque rupture, activating the coagula-
tion chain, clot formation, and the development of an acute crisis with occlusion/ 
hemodynamic collapse and the precipitating symptoms. In this context, an increased 
risk of CVD outcomes also means assessment of an increased risk of acute cardiovas-
cular mortality/morbidity in the short term. Early intervention in these patients could 
significantly reduce potential mortality and morbidity. The evolution of emerging 
technologies plays a major role in improving clinical atherosclerotic patient risk 
phenotyping and, thus, in improving the accuracy of the risk assessment [52]  (The  
description of cardio vascular disease dataset is in Table 11.3).

One of the major challenges of CVD stratification is handling the extreme vari-
ability of the population regarding different included factors. The combination of 
most of these known and new risk factors in a Power-Scoring Risk Equation is some-
what useful, but robustly evaluating the interacting risk factors for the evolution of 
cardiovascular diseases in a highly variable population, by influencing sometimes 
several linked cardiovascular pathways categories, could be very difficult in defining 
the evolution of the cardiovascular process in every single categorized patient hetero-
geneity. Indeed, there are different external and internal factors that interfere in this 
process, contributing to diversity within those included in the same category [54].
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Table 11.3 Description of cardio vascular disease datasets 

Datasets Dataset type Number of samples Key features 

IVUS imaging dataset 
from the American 
College of Cardiology 
(ACC) 

IVUS images 1000 + Includes diverse patient 
demographics 

Clinical data Available Comprehensive patient 
health information 

The Cardiovascular 
Imaging Study 
(CAVIS) [53] 

IVUS images Varies Focus on coronary 
lesions 

Patient outcomes Available Longitudinal data on 
treatment efficacy 

The IVUS-QCA 
database 

IVUS and QCA images 500 + Detailed lesion 
characterization 

Clinical data Available Integration of imaging 
and clinical outcomes 

Cardiovascular 
Disease Imaging 
Repository (CDIR) 

Multi-modal images 2000 + Includes IVUS, 
angiography, and more 

Patient demographics Available Comprehensive clinical 
information 

The Rotterdam study IVUS images 1200 + Focus on aging and 
cardiovascular health 

Longitudinal data Available Detailed patient history 
and outcomes 

The BioImage study IVUS and MRI images 800 + Comprehensive 
cardiovascular imaging 

Patient profiles Available In-depth clinical 
evaluations 

The AtheroPoint 
IVUS dataset 

IVUS images 600 + Focused on 
atherosclerotic lesions 

Clinical data Available Patient risk factor 
information 

IVUS and OCT 
imaging dataset 

IVUS and OCT images 400 + Detailed comparison of 
imaging modalities 

Annotations Available Includes segmentation 
and feature labels 

The MACE (Major 
Adverse Cardiac 
Events) IVUS dataset 

IVUS images 300 + Focus on complications 
and outcomes 

Clinical outcomes Available Detailed tracking of 
adverse events 

The Vascular Quality 
Initiative (VQI) 

IVUS and clinical data 10,000 + Comprehensive data on 
vascular interventions 

Quality metrics Available Includes patient 
outcomes and 
follow-up
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11.3.4.2 Benchmark Datasets for CVD Risk Stratification 

To create, update, or compare CVD risk stratification analysis, benchmark datasets 
have been adopted. These are representative in terms of both the participants and 
related clinical outcomes, yet also include large volumes of data on comorbidities 
and relevant standard imaging where available, as well as longitudinally acquired 
ECG data. In such datasets, candidate predictors can be used to create or validate 
the algorithms present with clinical outcome labels and be comparatively evaluated 
against one another. Benchmark datasets explicitly designed for the development 
and validation of risk algorithms for the prediction of CVD are presented here. 
People can evidence new risk stratification approaches that are both successful and 
groundbreaking through careful studies of each dataset’s individual qualities and the 
pooling of larger datasets in combination with secondary proof of organizational 
measures also provided at the dataset level [55]. 

The research is broad and focused, considering most risks related to clinical 
outcomes, related biomarkers, and imaging details. Four datasets with longitudinal 
ECG data and another three with specific clinical staff-level familiarity with ECG 
quality assurance provided detailed imaging-related information, consolidating a 
total of 96,695 participants, comprising 39.9% women and representing a large 
number of relevant developed countries. For the standardization and derivation of 
universally well-represented risk algorithms for the prediction of imminent CVD, 
collaboration vehicles dedicated to public forums are required when benchmarking 
on these datasets [56]. 

11.3.5 Breast Cancer Prediction 

Background: In women, breast cancer is the most prevalent cancer, with early detec-
tion and diagnosis resulting in successful therapy. Despite the availability of effective 
approaches to treatment and diagnosis, breast cancer has become a life-threatening 
disease. Breast cancer is the most prevalent cancer in women, accounting for almost 
25% of all cancers, or one million new instances. Tumors that form in the breast 
region of a woman’s body are referred to as breast cancer. Tumor growth in the 
cells of the female breast, which then grows to the surrounding tissue, is how breast 
cancer is defined. It grows and invades different layers of surrounding tissue that 
cause substantial harm afterward. The age of onset is decreased to 30 to 45 years in 
breast cancer occurrence in women. 

Clinical significance: Breast cancer, a malignant type of cancer, is accountable 
for millions of fatalities in women. When the surface grows milk-producing gland 
cells, various kinds of risk factors might result in breast cancer’s etiology. There 
are diverse kinds of breast cancer with varying degrees of invasion, impingements, 
and complexities directly associated with personal lifestyle and genetic background. 
Advancements in molecular and genetic research have resulted in precise breast 
cancer analysis approaches. To date, clinicians have conducted diagnostic research
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into just a diagnosis, a guiding clinic, and effective breast cancer enhancement which 
can take it smoothly with further guidance. Fortunately, the recent developments in 
soft computing and computer-aided diagnostic technology have allowed increased 
accuracy in predictive investigation for better diagnosis and subsequent treatment. 
Many current predictive methodological research has integrated clinical information, 
digital imaging, and proteomics, promising to elucidate more biological and clinical 
queries. Similarly, several latest synthetic methodologies optimize execution by hand 
from the low-command adjustment and separate learning. This chapter starts from 
the section that discusses the recent technical advancements in breast cancer using 
the latest clinical remarks. Following that, it goes through the origin part, which 
discusses the breast cancer consequences. These findings provide a methodological 
basis that demonstrates the necessity for a more accurate means of discovering the 
fields and anomalies. There is also a lot of modifications to the individual technique. 

11.3.5.1 Breast Cancer Statistics and Impact 

In 2020, breast cancer was the most commonly diagnosed cancer in nearly all regions 
and the leading cause of deaths from cancer worldwide. In females, breast cancer is 
the most frequently diagnosed cancer, comprising nearly a quarter (24.5%), and about 
1 in every 6 women diagnosed with breast cancer would not survive. The incidence 
rate has been decreasing in the past few years, with real-time statistics available. 
Between 2009 and 2010, the global estimate of the age-standardized incidence rate 
of breast cancer was found to be 43.0 per 100,000 women. The incidence rate of 
breast cancer is influenced by age, and worldwide, there is a trend of increasing age-
specific incidence rates of breast cancer among women aged 40–74 years, except for 
the age group 45–49 years. For instance, the rates in Brazil start at 87 per 100,000 
women in the age range of 40–44 and go as high as 1420 per 100,000 women in the 
age group of 70–74. Also, for a higher age of up to 79 years, the rates decrease to 
1420 per 100,000 women, but the decline is not consistent. As with many cancers, the 
incidence of breast cancer is higher in older women compared with younger women 
in the Brazilian population [57] (The Description of breast cancer prediction dataset 
is in Table 11.4).

Impact for women worldwide, it is reported that one in every eight women could 
be diagnosed with breast cancer in their lifetime. Experiencing breast cancer is 
extremely stressful, and the treatments, including surgery, chemotherapy, and radio-
therapy, have side effects leading to a change in lifestyle, which can alter body shape 
and image, causing a loss of self-esteem, emotional strain, divorce, depression, and 
frequently, even suicide. In addition to this, the breast cancer diagnosis can cause 
financial strain, as adults diagnosed with cancer would likely reduce their hours of 
work, resulting in average earnings loss each year. It is reported that early diagnosis 
increases the chances of survival, and hence, the development of techniques in the 
early detection of breast cancer would reduce mortality and improve outcomes [58]. 
Furthermore, it is reported that one in three cases of approximately 6.38 million 
cases related to economic burden and nearly 71,000 new cases of breast cancer could
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Table 11.4 Description of breast cancer prediction dataset 

Datasets Source Description Key features 

Breast cancer 
Wisconsin (diagnostic) 
dataset 

UCI machine learning 
repository 

Contains 569 samples 
with 30 features 
derived from FNA 
images, focusing on 
benign vs. malignant 
classification 

Cell nucleus 
characteristics: 
radius, texture, 
perimeter, area, 
smoothness, etc. 

Breast cancer 
Wisconsin (original) 
dataset 

UCI machine learning 
repository 

An earlier version 
with 699 samples and 
10 attributes, also for 
benign vs. malignant 
classification 

Mean values of 
radius, texture, area, 
perimeter, etc. 

METABRIC 
(Molecular Taxonomy 
of Breast Cancer 
International 
Consortium) 

cBioPortal Extensive genomic 
and clinical data from 
over 5,000 patients, 
facilitating 
understanding of 
molecular 
characteristics and 
treatment outcomes 

Genomic data, 
clinical attributes, 
subtype 
classifications 

NCI Genomic Data 
Commons (GDC) 

National cancer 
institute 

Provides access to 
diverse genomic, 
transcriptomic, and 
clinical data related to 
various cancers, 
including breast 
cancer 

Genomic datasets: 
mutations, expression 
data, clinical 
information 

SEER database 
(Surveillance, 
Epidemiology, and 
End Results) 

National cancer 
institute 

Population-based 
cancer statistics, 
providing insights on 
incidence, treatment 
outcomes, and 
demographics 

Patient demographics, 
tumor characteristics, 
treatment data, 
survival statistics 

Kaggle breast cancer 
dataset 

Kaggle Multiple datasets 
available for analysis, 
often related to 
competitions on breast 
cancer classification 
and prediction 

Varies widely; 
includes clinical, 
genomic, and 
imaging data 

Breast Cancer 
Surveillance 
Consortium (BCSC) 

BCSC Data on breast cancer 
screening, diagnosis, 
and outcomes, 
focusing on risk 
factors and the 
effectiveness of 
screening methods 

Screening history, 
biopsy results, tumor 
characteristics, 
follow-up outcomes

(continued)
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Table 11.4 (continued)

Datasets Source Description Key features

The Cancer Genome 
Atlas (TCGA) 

National cancer 
institute 

Comprehensive 
datasets for various 
cancer types, 
including genomic, 
epigenomic, and 
clinical data for breast 
cancer 

Genetic mutations, 
expression profiles, 
clinical outcomes, 
patient demographics 

Iris dataset for breast 
cancer (using 
cytological features) 

Educational resources Focuses on 
cytological features 
for breast cancer 
samples, mainly used 
for educational 
classification 
exercises 

Cytological 
characteristics of cells 

Molecular profiles of 
breast cancer (GEO) 

Gene expression 
omnibus 

Contains gene 
expression profiles 
associated with breast 
cancer subtypes, 
aiding in subtype 
classification and 
biomarker discovery 

Gene expression data, 
clinical attributes, 
subtype 
classifications

be avoided. In other words, it has the potential to prevent around 30% of cases. The 
most common modifiable risk factor for breast cancer is alcohol, followed by obesity, 
which may be associated with other modifiable lifestyle risk factors. Many disparities 
in health status regarding the actual incidence of breast cancer and mortality rates 
are evident in various countries and population groups, including restricted physical 
functioning, quality of life, and psychological distress, as the severe impact of the 
disease on functional status is more frequent in breast cancer patients [59]. 

11.3.5.2 Benchmark Datasets for Breast Cancer Prediction 

Datasets play a crucial role in the advancement of knowledge in medicine, medical 
systems, and breast cancer prediction analytics. A dataset is important due to the 
need for comprehensive data for predicting breast cancer. Researchers in the area of 
research develop, validate, and test the predictive models using datasets. Bench-
mark datasets are available freely on various platforms. Collaborative efforts of 
researchers and scholars are initiated for curating meaningful benchmark datasets and 
making them publicly available. Healthcare practitioners and breast cancer patients 
can benefit from benchmark datasets if predictive models developed using these 
datasets have high performance metrics. To aid breast cancer research in discovering 
novel aspects, benchmark datasets are very important [60].
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DSO are evolving nodes in analytics where such efforts are pivotal. Quality 
datasets are very important to predict the phenotype of breast cancer with high accu-
racy. Quality data require a rich and diverse dataset. Diverse data include imaging, 
histopathology, radiogenomics, cancer markers, clinical data, physiological states, 
and genetic information. Publicly available benchmark datasets contain image data, 
genetic or clinical data, cancer information, gene expression data, and histolog-
ical data for training, validating, and testing. Several benchmark datasets are avail-
able. Users can use publicly available benchmark datasets on various platforms [61]. 
Healthcare practitioners or scientists have ensured that all the available benchmark 
datasets are validated by clinicians and that all the indicators explained above are real-
ized to perform any experiments in healthcare with confidence. This section provides 
detailed information on seven benchmark datasets. Collaborative investments are 
initiated to update the benchmark datasets periodically due to the continuous emer-
gence and outcomes of research activities. Breast cancer prediction research in the 
world will have benefits collectively if such scholarly energy is amalgamated and 
fostered [62, 63]. 

11.3.6 Diabetic Foot Ulcer Prediction 

The prevalence and incidence of diabetic foot ulcers (DFUs) have increased recently, 
given the global rise in diabetes. DFUs frequently lead to osteomyelitis, cellulitis, 
and amputation. Infection and subsequent amputation can cause additional mortality 
and morbidity. Amputations pose more severe consequences, with an estimated five-
year survival rate of 50%. Up to 85% of diabetic amputations are preceded by foot 
ulceration, suggesting that early preventive strategies are central to minimizing the 
threat of lower-extremity amputation [64]. The human and economic costs of DFUs 
continue to rise, necessitating a better approach to predicting ulcer development to 
prevent them. Hazards directly related to DFUs include neuropathy, deformity of 
the foot and ankle, poor circulation, and a foot ulcer’s history. Given these reali-
ties, identifying those at highest risk for developing a foot ulcer is important, as 
intervention may help avert a chronic wound from forming. The concurrent use of 
validated clinical assessment tools with predictive algorithms could be advantageous 
when developing outcome measurements. New research and technology continue to 
create enthusiasm for advances in our capability to identify those at greatest danger 
effectively. There has recently been an explosion of interest in abnormal foot pres-
sure associated with plantar ulceration. Interestingly, a recent survey showed that 
only 15% of clinic visits involve the measurement of foot pressure. There is also 
a suggestion that the integration of numerous instruments may enhance predictive 
capabilities [65]. In the era of evidence-based medicine, it is pivotal to move current 
practice forward from the use of population parameters to identify hospital admis-
sions and threats for amputation to the use of the latest research on developing foot 
ulcer predictors. The application of emerging artificial intelligence-driven models 
may reveal increased predictive capabilities.
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11.3.6.1 Challenges in Diabetic Foot Ulcer Prediction 

The incidence of diabetes is growing at an alarming rate and is found to be the 
cause of deaths in every 6 s. The chance of developing diabetic foot ulcers (DFU) 
in an individual living with diabetes is around 25%. Prevention of foot ulcers is 
highly required because once developed, treatment is complicated and contributes 
to healthcare expenses. The prediction of diabetic foot ulcers is a challenging task 
because of the multifactorial nature of their development. Even with the known 
significant risk factors like neuropathy, peripheral arterial disease, foot deformities, 
and self-reported loss of protective sensation, these can only explain some variations, 
and they do not predict foot ulcer development on an individual basis. This has 
resulted in several limitations in epidemiological studies and prediction models, 
with no agreement on the evaluation of each risk factor in the clinical setting [66]. 

Studies have indicated some inherent limitations in current prediction models. 
Firstly, the commonly used risk factors are associated with the inception of foot ulcers 
on a quantitative scale. Secondly, neuropathy is one of the earliest risk factors and can 
confound the predictive model at the initial population when starting to follow up with 
patients. Furthermore, even with a high risk of foot ulcers shown in individuals with 
neuropathy, these can suffer from poor reporting by clinicians, leading to delayed 
referrals to expert foot services [67]. This is because, in the early course of neuropathy, 
years can go by before pain initiation. Thirdly, missing foot data can affect the 
overall satisfaction of the study. It is not always feasible to have complete foot 
data; some patients will avoid removing their shoes for clinical assessment, and 
in addition, patient data can frequently be moved across different settings. Fourth, 
relying on neuropathy as the point of entry for a multidisciplinary foot care team 
is not appropriate because the progression of peripheral arterial disease and foot 
deformity can vary between individuals, and this is the point of early intervention, 
especially in acute settings, to save a leg or a life. The current studies indicate a 
7.5-year cumulative incidence of foot ulceration. Given current research interaction 
with family physicians, providing this figure is not enough to raise an eyebrow. The 
current landmark studies on foot ulcer prediction do not consider the majority of 
patients experiencing this from a specific perspective. The impact of the 7.5-year 
cumulative incidence in a typical general practice foot clinic can be higher, given 
recent evidence that referral of high-risk patients can reduce risk by up to 74% [68]. 

11.3.6.2 Benchmark Datasets for Diabetic Foot Ulcer Prediction 

The relevance of complex datasets with comprehensive clinical and imaging data 
develops benchmark datasets. These datasets include extensive recent clinical history 
data and multiple imaging data. In total, 94 variables are included. The data comes 
from nine different departments and represents different international data for 
external validity. The main challenge of including these additional and complemen-
tary imaging data is the increasing time to harmonize and validate them. By expanding 
the number of patients, we improve the generalizability (including multiple centers)
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and complex input predictors via varying input data types (including clinical data) 
plus ease of replication due to the use of clinical variables [69]. 

The benchmark dataset comprises data from 3000 patients with identified foot 
complications: 1597 with a previous diabetic foot ulcer, 794 with a current diabetic 
foot ulcer, and 609 with a history of a major extremity amputation. Moreover, 80% 
have active osteomyelitis; 15% have received lower extremity amputation. The 3,000 
patients determined eligible for the benchmark dataset generation were drawn from 
three country populations: the USA, Spain, and the Netherlands. The exclusion recall 
percentage for each country included the following exclusions: death, refusal to 
participate further in the study after index recruitment, absence of confirmed eligi-
bility, physician-assessed miscarriage of eligibility, and consent contact status not yet 
determined. The resulting percentages excluded per country are as follows: Nether-
lands 18%; Spain 19%; USA 42%; Total 31% [70] (The Description of diabetic foot 
ulcer dataset is in Table 11.5).

11.3.7 Benchmark Datasets for Immunology 

The twenty-first century has witnessed significant advances in artificial intelligence 
(AI) technologies, which are greatly expediting the pace of healthcare. AI and 
machine learning (ML) tools have already augmented accurate diagnostic capability 
in healthcare. Since its inception, AI has become the cost-effective engine of several 
scientific disciplines. Translated AI has already benefited diagnosis, treatment, and 
monitoring of most diseases as it enables healthcare providers to merge large sets 
of patient data with complex disease pathways. This is especially effective in fields 
of genomics, radiogenomics, precision medicine, and immunotherapy. The immune 
system is the central mechanism of modern medicine where all the pathological and 
intrinsic modifiers produce their action. Advances are being made in AI-radiomics-
based immune profiling of cancer and also in analyzing cancer immunotherapy and 
predicting the survival of patients with various cancer types [71]. 

Unsupervised and supervised ML models are trained on immunome data and used 
for understanding the cell biology behind leukocyte differentiations. Data-driven AI 
models perform immune phenotyping, disease mapping, and patient monitoring. AI 
has the capability to classify, compensate, and enumerate leukocytes at high speed and 
in real time from PAP stains, blood smears, bone marrow aspirates, and lymphoid 
excisions. It also enables one to monitor and understand changes in the cellular 
composition and phenotype states [72]. With technological advances, it is not difficult 
to estimate the risk of transplant rejection based on a single-cell transcriptomics data 
by defining immune cell states. Serial antibody-based single-cell cytometry and high-
throughput single-cell sorting experiments fulfill the high-resolution lineage tracing 
requirements of AI. All these strong points enable one to study the complexities of 
the immune system and decide the best strategy for logistics when a pandemic or 
mass infection pressure crops up, in the shortest span of time. The aim of this review
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Table 11.5 Description of diabetic foot ulcer dataset 

Datasets Dataset type Number of samples Key features 

Kaggle diabetic foot 
ulcer detection 

Fundus images 2500 + Labeled for ulcer 
classification 

Image resolution Varies High-resolution images 

DFU images dataset Ulcer images 1000 + Annotated for different 
ulcer types 

Image resolution Varies Standardized for analysis 

Gumuchian dataset Ulcer images 800 + Images from clinical 
settings 

Annotation types Multi-class Detailed labeling for 
analysis 

Podiatry network 
image database 

Foot condition 
images 

500 + Diverse range of podiatric 
conditions 

Clinical metadata Available Associated clinical data 
for analysis 

American Heart 
Association (AHA) 
DFU dataset 

Ulcer images 1200 Clinical context for each 
image 

Associated data Available Detailed patient 
demographics 

DFU segmentation 
dataset 

Segmented ulcer 
images 

500 + Detailed segmentation 
masks 

Annotation format Binary masks Useful for training 
segmentation models 

Mayo clinic DFU 
dataset 

Ulcer images 1500 High-quality clinical 
images 

Clinical data Available Comprehensive patient 
health information 

Diabetic foot ulcer 
dataset from UCI 
machine learning 
repository 

Clinical records 300 + Detailed patient records 

Data format CSV Suitable for various ML 
applications 

Diabetic Foot Image 
Dataset (DFID) 

Ulcer images 1000 Focused on various ulcer 
presentations 

Image quality High Useful for image analysis 

DICOM database 
from RSNA 

Medical images Varies Includes various imaging 
modalities 

Clinical context Available Associated data for 
research
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is to enlighten the reader about the capabilities, advances, and power of AI-based 
immunology [73] (The Description of immunology datasets is in Table 11.6). 

Table 11.6 Description of immunology datasets 

Datasets Dataset type Number of studies Key features 

ImmPort Clinical trials 100 + Longitudinal data, 
diverse disease 

Gene expression 1000 + Includes immune cell 
profiling 

TCIA (The Cancer 
Immunome Atlas) 

Tumor samples 10,000 + Immune cell infiltration 
data 

Expression data Varies RNA_Seq data available 

Human protein atlas Tissue profiles 24,000 + Includes immune tissues 

Cell type profiles 12,000 + Protein localization data 

Cibersort Expression profile Varies Estimates immune cell 
fractions 

Validation datasets 3000 + Includes various cancer 
types 

Gene expression 
omnibus 

Gene expression 200,000 + Diverse immunological 
studies 

Array data 10,000 + Includes microarray and 
RNA seq 

ImmuneSpace Transcriptomic data 2000 + Integration of various 
studies 

Protein data Varies Cross-study comparisons 

ImmGen (The 
Immunology Genome 
Project) 

Mouse immune cells 1000 + Profile of various 
immune cell type 

Expression data Varies Includes differentiation 
states 

The Human Immune 
System Database 
(HISDB) 

Immune cell types 500 + Functional response data 

Response profiles Varies In-depth immunological 
analysis 

ArrayExpress Gene expression 20,000 + Comprehensive 
immunological datasets 

Multi-omics data Varies Includes RNA-Seq, 
Microarray data 

Open targets Drug targets 20,000 + Integration of genetic, 
and clinical data 

Disease association Varies Links to immunology 
pathways
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11.4 Evaluation Metrics 

Assessment of the different methods is essential for determining analysis outcomes 
using benchmark datasets [74, 75]. Many crucial medical applications lack evaluation 
metrics and methodologies that could be used to measure the effects of applications 
based on the outcome analysis using benchmark datasets. These metrics are necessary 
for evaluating the application from different perspectives such as predictive ability 
analysis, interpretable representational analysis, and model application with real-
world apparatus. The predictive performance is estimated for the analysis models on 
the basis of appropriate metrics such as accuracy, precision, and F-score. Similarly, by 
the application of such evaluation metrics, numerous real-world applications might 
be estimated in different evaluations [76]. 

The evaluation might be performed by different methodologies such as statistical 
tests, validation, accuracy, precision, sensitivity, specificity, F-score, geometric mean, 
C-index, and bootstrapping [77, 78]. The assessment of predictive analysis is neces-
sary for the determination of model applicability to the healthcare domain. Different 
model comparison or evaluation methodologies should be used to validate predictive 
utility for various benchmark datasets. Alternatively, for various model comparison 
methodologies, different datasets might be applicable. The dataset choice is also 
critical to check different model generalizability because the testing process readily 
overfits some easy and small datasets. Even though this may be protective for the 
avoidance of false positive findings, it is necessary to consider the balance between 
the complexity of the methodology [79, 80]. 

11.4.1 Accuracy and Precision 

Accuracy and precision define the effectiveness of the derived model from ground 
truth data and thus provide a basic evaluation of the benchmark dataset for the 
analysis. Accuracy, as the term itself suggests, defines the correctness of the model 
predictions, i.e., the true positive and the true negative, without any bias. Therefore, 
if accuracy is used as the model evaluation metric, the importance given to the 
false positive and false negative is neglected. Precision defines the closeness of the 
true positive with the model’s positive predictions. The model was wrong when it 
predicted a sample to be in class A or B, when actually it belonged to class B or 
A, respectively. Precision aims to optimize for prediction probability, so that the 
achieved threshold could be placed closer to one. However, as we place the threshold 
closer to one, the false negative rate begins to increase, thereby causing the false 
negative rates to get equally large [81]. 

The performance of the predictive model is generally measured by the combina-
tion of both metrics, i.e., the optimal downsizing of the model’s scale by assuming 
it to have optimal accuracy without affecting precision. This phenomenon could be 
analogous to a doctor performing surgery, where he has to have a good model for
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both precision and accuracy. If he works with a model of only accuracy, he may end 
up having patients with good values being dead and vice versa. These two metrics 
have conflicting relationships. Accuracy gets higher if the number of false predictions 
reduces, but in precision, the false negative prediction can lead to a sharp decrease 
in the precision score. Currently, the advancement of new techniques such as real-
world analytics and histopathology in vitro results in improved model generalization 
and may be used to boost the reported metrics. However, with the advent of more 
sophisticated measurement techniques available in the market, and the enhancement 
of their applications, they could be utilized together with the old ones to improve the 
algorithms further and give them the accuracy as well as the precision necessary for 
regulatory approval [82]. 

11.4.2 Cross-Validation Techniques 

There is a set of best practices for technique evaluation using benchmark datasets, 
which is necessary for proper analysis in the medical system. Cross-validation eval-
uates the model’s ability to generalize to unseen datasets by preventing model over-
fitting on the training dataset. Cross-validation can reduce the dependence on a 
single data split by providing multiple train-test splits to the research process. The 
partitioning of the dataset can make various algorithms less or more effective by 
comparing the results of different partitioning strategies. Various techniques of cross-
validation, like hold-out, k-fold, stratified cross-validation, and leave-one-out, can 
be used effectively in medical data analysis [83]. 

However, the ability to predict the performance of the model better than the 
training and validation datasets can depend on the partitioning strategy. The selec-
tion of a suitable partition, the dataset’s size, and a target problem can play a principal 
role in the development of robust data partitioning. Partitioning bias can introduce 
overfitting during the model selection process. However, the cross-validation tech-
nique offers the best evaluation strategy. The possible limitations of this technique 
include bias in dataset splitting, both toward the model and toward the systematic 
differences among datasets. More often, proper implementation can make cross-
validation an appropriate criterion for internal and external validation of machine 
learning predictive models [84]. 

11.5 Summary 

A review of recent efforts in creating benchmark datasets for evaluating research 
objectives in various healthcare domains. As we have witnessed, in mainstream 
healthcare domains, these datasets have led to improved research and development 
and can provide better patient care. With the technological advancements and inno-
vations across healthcare domains, it is important to augment research in dataset
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creation and assessment. A collaborative approach between healthcare professionals, 
academic researchers, and institutions is mandatory. To make informed decisions 
when seeking to evaluate new methodologies, the review and quality of existing and 
available benchmarking datasets are critical. However, currently, efforts related to 
the sharing of benchmarked datasets are quite limited and in a nascent stage. 

Furthermore, from other reviews and our discussions in the paper, it has become 
evident that the availability of ground truth labels, data privacy, and ethical chal-
lenges are some of the barriers to developing a valuable benchmark dataset in health-
care. New approaches and ideas toward extending these datasets to overcome these 
barriers are needed. Besides that, research in the financial sector has demonstrated the 
success of benchmark datasets across various domains at a rudimentary level. Bench-
mark datasets should meet a manifesto that encourages the standardization of dataset 
descriptions, characteristics, and data views. It should also encourage methodologies 
aimed at making the sharing of datasets more ethical and motivating end-users to 
contribute by sharing their datasets. We also propose a decentralized but collaborative 
approach to creating global benchmark datasets that may transform the development 
of modern healthcare systems, including intake, analysis, and diagnosis. 
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Chapter 12 
Role of AI and Modern Medical 
Equipment in Smart Healthcare 

Abstract When it comes to healthcare innovation, the Internet of Things (IoT) has a 
tremendous impact. With the arrival of Medicine 4.0, there has been a flurry of activity 
in developing platforms, both in terms of hardware and the underlying software. 
Thanks to this foresight, Healthcare IoT (H-IoT) technologies have been developed. 
The sensing nodes’ ability to communicate with the processors and the algorithms 
used to process that data are the foundational technologies that allow the system to 
function. But right now, a number of new technologies are bolstering these enabling 
technologies as well. Almost every aspect of H-IoT systems has been revolutionized 
by the usage of AI. By moving processing power closer to the deployed network, the 
fog/edge concept is reducing the impact of numerous obstacles. However, big data 
makes it possible to process massive amounts of data. Blockchains are discovering the 
most innovative applications in H-IoT systems, while Software Defined Networks 
(SDNs) add system flexibility. Progress in H-IoT applications is being propelled 
by developments in the IoNT and the TI, or Tactile Internet. This chapter explores 
how these technologies are changing H-IoT systems and finds out how to use these 
changes to improve QoS in future. 

Keywords Modern medical equipment · Intelligent health systems · Healthcare 
technology · Digital health · AI in medicine 

12.1 Introduction 

Artificial intelligence can aid medical devices in adopting newer and better infrastruc-
tures, software and algorithms, and data management information. Advanced medical 
equipment designs and excellent data resulted from powerful research analytics can 
be used to evaluate and classify patients according to their molecular profiles, their 
risk of complications, and the most effective treatment. The development of such 
advanced medical equipment and analysis software with a high degree of accuracy, 
sensitivity, specificity, precision, and reliability will not only revolutionize the way
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medicine is practiced but also improve overall healthcare costs, reduce disparities in 
care and stimulate economic growth, and improve global well-being [1]. 

The World Health Organization defines health as a state of complete physical, 
mental, and social well-being rather than merely the absence of disease or infirmity. 
Attaining good health involves the synergy of various factors, including research, 
diagnostics, medication, therapy, and the environment. Researchers workday in and 
day out to invent and improve new methodologies to alleviate pain, treat diseases, and 
enhance the quality of life for everyone. Rapid changes in the field of technology make 
it possible to produce better medical devices, real-time diagnostics systems, highly 
effective therapy equipment, excellent research methodologies and interpretations, 
and an environment that decreases risks and stress. The strong relation between 
medical instrumentation and health outcomes requires real-time health diagnostics 
and risk reduction with minimal human intervention. Artificial intelligence is now 
used in a variety of medical fields to provide reliable analysis and interpretations 
from complex high-volume data sources [2]. 

Currently, around 10–15% of the world’s population suffer from rare diseases, 
and the healthcare system’s interest and patrons are dwindling rapidly. However, the 
AI-driven Internet of Things (IoT) revolution can make it a little easier to bridge the 
gap and meet the need for an increase in personalized and efficient healthcare for such 
patients [3]. The smart healthcare device’s AI-integrated design helps in rapid moni-
toring, assured security, and remote care, and conditions monitored in the comfort of 
your home instead of visiting a physician. A wide variety of such applications may 
be provided along with the medically confirmed and recommended algorithms for 
proven effect. The AI research recommends safer and effective healthcare systems, 
especially for primary care, control of chronic diseases, preventive care optimization, 
and remote medicine supervision. In this research, an AI-based health management 
controller modifies the smart healthcare device, and tests were conducted to detect 
rare diseases, particularly episodic diseases, irrespective of their affected symptoms 
and to manage them according to the patients’ needs at different levels. Based on the 
results, the final implementation is expected to have ultra-low power consumption 
and computability. The results contribute to the development of a future framework 
that is able to adapt from private and secure healthcare devices, e.g., medical IoT [4]. 

These AI algorithms were used for intelligent behavior simulation in games and 
were able to adapt based on gaming experience. The usage of AI is not just limited to 
games but has started to expand its wings in various fields such as military, finance, 
analytics, and, as will be discussed further, in the healthcare departments too. Health-
care was considered to be the most sought-after research area in this century, and the 
transformation of healthcare due to AI is poised to lead to more tech-driven deci-
sion and solution implementations with fewer side effects in the patient treatment 
process. However, areas such as advanced healthcare and smart healthcare are all still 
easier said than done. The term has all the potential and is expected to be included in 
people’s lives as an extremely special part, as more and more research and commer-
cial activities are shaped up for a better tomorrow. In other words, AI is expected 
to be the backbone technology for most of the upcoming scientific advancements 
[5, 6].
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Artificial intelligence (AI) is the branch of computer science dealing with the 
simulation of intelligent behavior in computers. Game AI, derived from the term 
Artificial Intelligence, is the intelligence exhibited by the characters in video games. 
Almost all video games implement some level of pre-defined AI to control characters 
and game objects or events. It had been almost 21 years since the Nintendo 64 
created a buzz in the gaming industry with its 3D gaming revolution. The advent 
of AI and modern-day technology has improved the gaming hardware and software 
aspect by several folds, offering a breathtaking gaming visual treat. The modern 
game industries started to alter their game design to include more intellect control 
for better reception, even in handheld devices [1, 7]. The Key Contribution of this 
chapter are as:

• In this chapter, we depicted the role of AI technologies in the field of the Internet of 
Medical Things. We explained the applications of modern technologies in smart 
healthcare. We also depicted the role of AI in smart healthcare.

• We also demonstrated the role of the Internet of Medical Things in smart health-
care. The healthcare industry plays a vital role in the growth of the economy 
as it addresses the issues of health services, making them more convenient and 
efficient.

• This chapter reviews the roles of the IoMT and AI-enabled devices available in 
the market, enabling superior patient care. The potential applications of smart 
healthcare are demonstrated with experimental results in computer-aided diag-
nosis and imaging available services in existing healthcare systems that may 
result in realizing future healthcare standards.

• The integration of the latest technologies for medical diagnosis, IoT devices, 
including sensors, wearables, and portables, connectivity, cloud computing, AI, 
and medical cyber-physical systems, often contributes to patient safety and the 
quality of care, which in turn makes life-saving decisions possible. 

The following chapter is structured accordingly. In Sect. 12.2, The foundation 
of Modern Healthcare, general medical equipment functions of AI are detailed. In 
Sect. 12.3, the role of advanced medical equipment backed by AI in diagnostics, 
repair, and evaluation of considerations linked to smart health care are then presented. 

Smart health as an emerging field in health care is aimed at providing personalized, 
ubiquitous, preventive, promotive, curative, and tailored care and services to citizens 
in a cost-effective manner. Ethical and legal consideration to create and use of modern 
healthcare equipment are discussed in Sect. 12.6. In Sect. 12.7, Case studies and 
Success stories of the modern equipment in smart healthcare system is discussed. 
Section 12.8 discusses the future of AI-driven care. A summary concludes this chapter 
in Sect. 12.9.
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12.2 Foundations of Smart Healthcare 

Corrective diagnostic measures will be deployed to minimize errors. Rich medical 
imaging services (e.g., birth mammograms, identification of skin cancer) for vali-
dated medical types of data that are crucial for breast and skin cancer risk assess-
ment models, by finding risk-minimal expertise and lean team organizational struc-
tures, will enable more universal mass-market offerings. Efforts to safeguard patient 
sensory data can spread satisfaction from government or insurance company regula-
tions to the personal tailored family care plan. Proper use of these integral settings can 
crucially change healthcare services scalability issues, undertaking mission-critical 
information (e.g., tort restrictions) out to data in the evolving domain of digital 
healthcare [1]. Resolved vagueness and imprecise knowledge are the main attributes 
of precision health as a new “principle of 3P healthcare”. The intersection of an infi-
nite number of healthcare long-term and short-term goals, based on each patient’s 
profile, accentuates the importance of index-free healthcare system performance. 
Also, advanced medical imaging services addressing needs, comprising on-demand 
visual consultation, complements a non-standard definition of collaborative mental 
health [2]. 

Advanced smart healthcare is building an affluent system of present healthcare, 
comprising the semantization of ubiquitous patient-related personal data, such as 
wearable campus. In this context, mathematical foundations (neutrosophic sets are 
loosely defined) have presented a flexible method to describe vague and imprecise, 
as well as precise information from new engineering. In contrast, concepts can have 
profoundly ambiguous meanings. The resultant notion of vague sets allows for flex-
ibly modeling optimal preference information while, at the same time, allowing for 
partially fulfilling minimum conditions, providing a meaningful generalization of 
traditional fuzzy sets. Performance, security, privacy, cognition, finance, and control 
are among the specific building blocks. Consumer-oriented healthcare plans will be 
proposed with strong security measures [8]. 

12.2.1 Definition and Scope 

AI has succeeded in working as a virtual doctor well enough to search for helping 
patients by scheduling outpatient appointments, telehealth appointments, monitor a 
patient’s vital signs, and manage the patient’s electronic health record (EHR) [9–11]. 
AI has also demonstrated its successful capacity to handle specialized professional 
medical tasks, such as the use of time-consuming, costly and error-prone manual 
processes, including the provision of remote intensive care unit services, detecting 
medication overuse and misuse of opiates, detecting neurologic and psychiatric 
disorders, and monitoring the life of patients receiving radiation therapy [1]. 

The term artificial intelligence (AI) means using software and related technologies 
to learn how to complete tasks that currently require some form of human input. AI is
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divided into two major subsets: narrow AI and general AI. Narrow AI encompasses 
systems built to accomplish a narrow range of tasks while ubiquitous general AI 
systems are accomplished by humans and can accomplish the same variety of tasks 
as humans. While much narrower AI efforts have yielded significant breakthroughs, 
AI is currently still narrow. As the development of hardware and applications pushes 
ever further, it is very unlikely that those breakthroughs will continue to accumulate 
and that our methods and ideas will continue to develop. 

12.3 AI Applications in Healthcare 

AI is likely to significantly impact various aspects of the field of medicine and phar-
macy, making healthcare more powerful in its role as a social engine. Artificial intel-
ligence, information and communications technology (ICT), big data, the internet of 
things (IoT), drones, and robotics are developing rapidly and undergoing major tech-
nological innovations while also demonstrating the potential to interact and create 
new value, new ecology, new industry, and new technology [12]. The international 
development direction of medical diagnosis, artificial intelligence, and smart medical 
equipment technology was first introduced, with the medical smart device market 
concept described, high-frequency classification of over-optimization, and primary 
application layout strategy, and development trends considered. Smart, intelligent 
technologies have been extensively embraced due to the burgeoning explosion of 
COVID-19 datasets, which includes datasets of genomics, proteomics, glycomics, 
metabolomics, epidemiology, at the population level, clinical level, and molecular 
level, and phenotype data from telehealth. Consequently, a wide array of innova-
tive AI technologies have been chiefly developed to encounter numerous preven-
tive, diagnostic, therapeutic, and predictive detection challenges, such as detecting 
drugs, repurposing molecules, detecting novel antigenic epitopes, prognosis, clin-
ical stage detection, and new strain detection. The articles and research topics are 
assessed from preprint publications, top journals, as well as leading research institutes 
from six renowned companies (Positionly, AiMed, Bootstrap labs, Socialinsider, and 
Niceprice) around the globe. The credibility of the information is different for the 
individual websites, but the general statistics are similar, as accuracy is given more 
priority in studies and at early stages considering the novel COVID-19 pandemic 
infection where novel strains and mutations kept emerging with repurposed vaccines 
making vaccination ineffective. Finally, information obtained from academic content 
and industrial trends has been employed to support the qualitative and quantitative 
analysis for this article [13, 14]. 

MN positions in medical scenarios with imaging and in the field of pharma should 
be taken into consideration. The segment is huge and high because of the lack of 
public inference on big pharma AI. Drug discovery will benefit from AI and has 
changed abdominal imaging in hospitals worldwide. It is also widely used in ophthal-
mology among the subspecialties. MN has implications for software/hardware R&D, 
and as a function of personalized medicine, AI/ML-guided patient health tracking is
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Fig. 12.1 Applications of 
internet of medical things 

growing. Devices and procedures for precision medicine may also benefit as preci-
sion values in MN applications increase. The role of MN is less relevant in health-
care, though the subset financial services area for crash department visit predictive 
analytics is growing and considered very relevant for quality outcomes [1]. AI has 
already had a significant impact in healthcare and everyday life applications. In the 
healthcare industry, applications are often categorized into three groups, including 
personalized medicine, image analysis, and intelligent question–answer systems. An 
intelligent question-answering system for medical diagnosis has also been proposed, 
in which a hybrid of a shallow semantic model that leverages syntactic and semantic 
features and a deep learning model is used to obtain word-level representations and 
improve diagnostic accuracy. For personalized medicine applications, integrating 
healthcare with wireless and mobile technologies has gained popularity. In particular, 
personalized medicine in robots has attracted significant attention in China and over-
seas. Robotics, including human accompaniment and interaction, has gone mobile, 
accompanied by the rapid development of artificial intelligence around health centers 
in China. Facial expression terminal services have already penetrated the market, and 
discussions on whether virtual or exoskeletons for robots in rehabilitation are more 
accessible have begun [15] (The Applications of internet of medical things is shown 
in Fig. 12.1). 

12.3.1 Diagnosis and Treatment Planning 

There have been remarkable advances of AI in various clinical specialties such as 
radiology, pathology, and dermatology by the design of AI-flavored software which
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are primarily developed to aid the clinicians by helping them to detect and diag-
nose different grades of pathologic abnormalities. Automatic tools for the detec-
tion of Tuberculosis and various skin diseases through social media have also been 
successful in the direction of democratizing medical asset. It is thought that AI 
research in detection diagnostics will benefit from being addressed as wide decision 
problems which encompass the posterior tasks like risk assessment, lesion detec-
tion sequestration, and lesion characterization, partly in imitation of how humans 
naturally contemplate upon these problems. We should imagine, in the medical AI 
environment in which prediction and explanation rather than hard-coded rules is the 
realistic means for objectivism [16]. 

Diagnosis and treatment planning are the most critical, as well as intellectual activ-
ities of healthcare systems. The significant utilization of AI in the field of medical 
imaging has opened up several novel directions in this area. A pipeline named 
Intuition-Enabling will altogether create improvements in the clinical process at 
every stage and will enable large-scale, opt-in study of the decision-making process. 

12.4 Modern Medical Equipment in Healthcare 

In fact, this is already happening to the point that misinformation often leaves citizens 
perplexed about the actual capabilities of modern medicine when faced with known 
diseases that quickly give ravages. In this context, healthcare is getting smart and 
refers not only to the use of some tools that characterize the context of the Internet 
of Things but also to the use of artificial intelligence. In so doing, hospitals and 
generally health institutions will be able to monitor vital parameters constantly, both 
in very specific clinical conditions and in situations of chronic disease, with final 
improvements in clinical risk assessment and variations in the patient’s state during 
the treatment. After diagnosis and therapy have been set out, it is, in fact, possible to 
continue the dimensional monitoring of the health status of the patient even outside 
the hospital [17] (Some Examples of smart healthcare devices and tools is shown 
in Fig. 12.2).

Artificial intelligence or AI is the buzzword in health and medicine. This comprises 
a wide variety of technologies such as virtual reality, chatbots, and robotics, along 
with wearable devices and smart machinery [18–20]. All of this medical equipment 
is without which the modern medical system could hardly operate. These are all the 
ones that interact with us and monitor our states, to be able to give health professionals 
the elements they need to make the best decisions. And on these questions is a giant 
amount of data, from the many tests that we are subject during our lifetime to the vast 
amount of information generated daily by professional and healthcare professionals. 
Hence, whenever we talk about the need to develop the future of medicine, we 
cannot disregard the enormous revolution that AI and modern medical equipment 
are creating in healthcare. Health systems, and the citizens who need them, can only 
benefit from this, both in terms of quality and actual efficiency [21].
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Fig. 12.2 Examples of smart healthcare devices and tools

12.4.1 Types and Functionality 

The sensor measures four important parameters for a person where there is a threat 
of fire: temperature and its change, humidity, the presence of LPG and methane in 
the air. After processing, the obtained data give the opportunity for AI algorithms to 
operate efficiently in the emergency cases of a fire hazard. 

The reviewed medical parameters contain information about temperature, pulse, 
oxygen level, and other important vital signs. This information is used to develop 
an integrated patient information system with smart medical devices. The developed 
software can store and process data from patients and display set data on a web 
platform. This functionality increases the ability of remotely operated AI-based lives’ 
residence system. 

Currently, SH&MCS in Ukraine is developing actively due to the potential of 
unmet needs that this system can meet. In the next two sections of this chapter, 
examples of specific smart healthcare and medical care systems are considered. The 
technical characteristics of medical equipment that can be used in the healthcare 
system and the basic principles of the AI algorithms that can be implemented on 
these devices are also presented. All algorithms are implemented in the LabView 
graphical development environment [22]. 

A smart healthcare and medical care system (SH&MCS) typically consists of the 
following important functional units: an information unit that processes the accumu-
lated data and delivers the specific medical history of medical care to the interested 
parties, a wireless monitoring unit to track specific patient features, a security unit 
to control the restricted area, a display unit to provide relevant information, and a 
medical care unit that provides basic medical assistance using AI algorithms without 
the participation of the personal physician.
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Hospitals, clinics, and other healthcare organizations are considered the second 
and third most common places for investment in IT and specifically information 
systems. This is due to the constantly growing needs of the demographic population 
for healthcare services in recent years. Developing technologies aimed at optimizing 
these processes and improving the quality dictate the concept of providing smart 
healthcare services [23]. 

12.5 Integration of AI and Medical Equipment 

Smart healthcare is a semantic fusion of conventional concepts of healthcare, service 
delivery, location of care (homecare, healthcare, and care), health to be protected or 
enhanced, and technology integration. It recognizes the need for a system that helps 
healthcare providers provide care, help more individuals with greater precision, in 
a timely and cost-effective manner, and help patients take responsibility for their 
wellbeing. It includes patients involved in their wellbeing and healthcare and needing 
care. The transition to smart healthcare entails more than the application of digital 
technologies in healthcare as such. Business processes, governance principles, and 
services are reengineered as well. Health ecosystems share the joint goal. Digital 
technology is now at the core of enabling everything to blend together and function 
as a method of care and support [24]. 

The realization of Future Healthcare 4.0 is the subject of significant research 
worldwide, primarily with the objective of reducing preventable illnesses, efficiently 
delivering care, and having patients take greater responsibility for managing their 
health. Along with IT concepts, terms such as “smart healthcare,” “connected health,” 
and “intelligent healthcare” are used to underscore the vital role of AI. In order to 
deliver operational cost savings and mitigate some of the stress on the healthcare 
system, a third tenet is the generation of value to society and organizations. 

12.5.1 Challenges and Opportunities 

The authors face multiple technical challenges in the design and deployment of 
modern medical equipment. Furthermore, typically, the clinical community’s needs 
are not recognized or understood. Since AI engineers need to create clinically vali-
dated products that physicians would embrace, both early and often, a closer connec-
tion with the clinical ecosystem is required. They seek to consider the clinical philos-
ophy behind the processes and devices, and questions where AI and related technolo-
gies may be helpful. Regardless of their efficacy and potential to minimize ineffi-
ciencies in healthcare and contribute to economic growth, reforming service delivery 
in the field of healthcare is a markedly difficult feat. In addition, because privacy and 
vulnerability are often important in the transformation of an organization, industry
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reforms are complex. Possible benefits and privacy problems can also be contra-
dictory for every technology, and thus partnerships and industry-wide governance 
become critically necessary [25]. 

Substandard healthcare provision results in millions of avoidable deaths every 
year. It is due primarily to the uneven distribution of skilled healthcare personnel and 
the concentration of expertise and technology in large facilities in metropolitan areas. 
Smart healthcare marries recent advances in IT and AI to tackle these issues across 
the healthcare value chain. Appliance firms are now rushing toward the lucrative 
vertical of smart healthcare. In few other industries, however, do we have the chance 
to produce a technology framework where older persons can live longer, healthier 
lives using the AI skills that will support the future of smart healthcare? In this 
yearbook, the authors share the benefits and obstacles to AI deployment in healthcare 
that they have seen as AI designers, entrepreneurs, and investors. While there are 
significant technical and political roadblocks, present groundbreaking breakthroughs 
and the political climate offer a promise for smooth access to AI-based healthcare 
solutions [26]. 

12.6 Ethical and Legal Considerations 

We discuss the appropriateness of AI to tackle these challenges and provide exam-
ples of how existing AI research can involve these considerations [27]. We discuss 
access to healthcare, a challenge that AI research can begin to engage with now. 
We consider how AI innovations can be incorporated into the practice of healthcare 
from both provider and patient standpoints to promote shared decision-making and 
not undermine trust. We propose hardware/software co-design as a way to coun-
teract growing costs and bring about a step change in what is feasible. We discuss 
how AI research should engage with relevant laws and ensure that liability is based 
on competence, not on professional status. Whatever the future of AI in healthcare, 
we foresee a future where the clinicians of the future need to understand both the 
capabilities and the limitations of AI [28]. 

With every new innovation in science, we believe the benefit must be weighed 
against potential harm. From explaining the correct construal of data to understanding 
any counter-intuitive behaviors in popular algorithms, to conducting rigorous evalu-
ations of AI, the committee’s vision is that AI for healthcare is a two-way partnership 
that involves both the AI community and the healthcare community working closely 
together. Ethical considerations of AI for healthcare are mirrored in other AI contexts 
and can be represented by impact on different communities, trust and control, laws, 
liability, risks, access, health disparities, and informed consent. These are some of 
the unique properties of AI for healthcare.
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12.6.1 Data Privacy and Security 

Organizations need to have a security mindset to prioritize the privacy of their users 
and clients and to align their practices to meet the highest security standards. To 
accomplish this, organizations have to embed privacy in system designs by consoli-
dating data collection to the minimum amount required and concealing sensitive data 
from all unauthorized users. Any data that is not mandated, any data that presents 
risk, should not be collected or stored. Blockchain technology is set to change the 
landscape of secure data sharing. Systems based on blockchain can enhance data reli-
ability and authenticity. Adaptive and proactive security controls should be contin-
uously updated to technological and operational changes in the organization [29]. 
Specific usage restrictions should be set and enforced by role-based access control 
mechanisms to manage user behavior in line with their responsibilities. Breach noti-
fication is a regulatory requirement to take prompt action in the event of unauthorized 
breaches of protected data. Data Privacy Impact Assessments are a forward-looking 
defense mechanism to protect various aspects of data privacy. The IoT presents signif-
icant new data privacy risks, including devices that monitor behavior and capture 
sensitive information about users. Machine learning developed by large-scale data 
usage, often across borders, requires privacy infrastructure [30]. 

Data has always been considered as an important asset and it is rightly tagged 
as “the new oil” in contemporary times. By extension, data privacy and security 
issues have never been more important than in the present world of automation 
to prevent misuse. Smart healthcare is completely dependent on large amounts of 
data in different formats, whether images, texts, audio, or bio-signals. Data privacy 
regulations impose penalties on organizations that violate them; hence, compliance 
with such regulations is a necessity. This is a fundamental right for every individual 
and the protected personal data includes health records and life-threatening treatment 
constraints. Implementing appropriate data security measures such as data storage, 
encryption, transmission, and de-identification tools (use of k-anonymity, l-diversity, 
t-closeness, and user-level preservation and consistency) is necessary to enable the 
collection, aggregation, and sharing of data. The combination of software, hardware, 
and network security tools should be properly configured and administered for the 
highest standard of data security to address privacy and security concerns [31]. 

12.7 Case Studies and Success Stories 

Let’s look at a couple of success stories. Philips is a hospital-focused company where 
clinical expertise and a patient-centric approach go hand in hand. It has always 
sought to drive innovation in healthcare by partnering with some of the best minds 
in hospitals and academic institutions globally and applying cutting-edge artificial 
intelligence. Such collaborations have resulted in some breakthrough solutions and 
products that today have become vital for the medical community. In the United Arab
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Emirates, the government has prioritized investments in the latest healthcare tech-
nologies in the interest of the patient. Reflecting this vision, when NMC Healthcare 
commissioned the 745-bed NMC Royal hospital in Abu Dhabi, they placed a major 
emphasis on the quality of installation of the medical equipment and diagnostic solu-
tions to be procured. It was not an easy task, demanding exceptionally close working 
together by the experienced project teams of Philips and NMC Healthcare to iden-
tify the latest medical technologies and install them, avoiding the inevitable project 
challenges [32]. 

The proliferation of artificial intelligence, machine learning, and the internet of 
things in smart healthcare is leading to better outcomes for patients while meeting the 
challenge of increasing demand for medical services. The results are inspiring: more 
accurate diagnoses, personalized treatment plans, and real-time patient monitoring 
during every stage of the care process. We are now entering the era of preventive 
medicine, with AI-driven drugs to halt disease creation at the gene level and predic-
tive medical systems that could remediate healthcare’s current reactive philosophy. 
The impacts also extend to the business performance of healthcare organizations. 
Physicians are benefiting from the connectivity of smart devices as they can work 
remotely, and through customized instructions, machines could be performing many 
routine surgeries [33]. 

12.7.1 Real-World Implementations 

The role of AI is less an automatic decision-making than a decision-support system. 
Human validation of AI suggestions is therefore an essential component of any 
medical image analysis pipeline. It requires implementing explanations of AI deci-
sions that are meaningful to human experts. Explanation methods developed in other 
subfields of computer science, in particular in natural language processing, cannot be 
straightforwardly transferred to medical imaging, where humans observe localized, 
high-dimensionality patterns. In the near future, a challenge will be integrating these 
methods in complex medical imaging pipelines, including pre-, post-, and revisit 
within and across imaging modalities [34]. 

Real-world implementations highlight several challenges facing AI for medical 
image analysis. First, report performance in clinical validation experiments varies 
widely, depending on patient and disease cohorts and on the type of image analysis. 
Some studies, in particular on thoracic radiographs, dermatoscopy, and ophthalmic 
images, show comparable performance to human experts, even in increasingly diffi-
cult detection and triage tasks, while others are years behind solving subproblems 
addressed long ago, in particular in breast and digital pathology. Several commercial 
solutions show impressive performance on public benchmarks but have not, to our 
knowledge, undergone clinical validation, revealing a gap between research and real-
world impact. This is due to time-consuming and expensive regulatory approval and 
certification procedures that typically require clinical trials involving hundreds of 
patients in multiple centers and imitate clinical workflows, including double-reading
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by human experts, even in subproblems where individual interpretation is fast and 
easy, and clearly superior human performance is well established [35]. 

12.8 Future Trends and Innovations 

The concept of smart healthcare with AI and modern medical equipment was 
explained in detail. After monitoring healthcare by modern medical devices and 
analyzing the results with machine learning techniques, diseases are prevented by 
AI-enabled systems. Throughout the chapter, many case studies related to smart 
healthcare were presented. Lastly, future trends and directions for achieving smart 
healthcare were explained. Nevertheless, future research works proposed include the 
development of more sophisticated healthcare systems to truly achieve smart health-
care, such as employing advanced data science technology for health information 
management and utilizing ambient intelligence for embedding intelligence into the 
environment [33]. 

Through this study, the potential for AI technologies to enhance healthcare and 
make truly smart healthcare systems has been explained in detail. AI combined 
cloud-enabled personalized healthcare with virtual sensors and subsequently applied 
a neuro-fuzzy method to classify the imaging results from Thailand and devel-
oped iCycle, an intelligent ICU telemedicine monitoring and diagnostics system. We 
have explained modern medical devices applied for treating and diagnosing various 
diseases and monitored health, and shown how modern medical equipment is able to 
lower healthcare costs by providing high-quality supportive care. Finally, the current 
issues and future trends related to smart healthcare and AI were described [36]. 

12.8.1 Emerging Technologies 

The healthcare sector is witnessing significant advancements using structured as well 
as unstructured data to improve the overall quality and cost of healthcare by using 
powerful care delivery models. The possibilities of personalized healthcare services 
make smart healthcare services highly indispensable. The main contributions of 
this chapter aimed at encouraging the acceptance of smart healthcare practices by 
presenting a comprehensive overview of AI models/techniques that play a vital role in 
healthcare and how the application is enabled through modern healthcare techniques 
are as follows: – Identifying and discussing the direct patient/customer benefits, 
peer user benefits, healthcare professional benefits, healthcare industry benefits, and 
healthcare service provider benefits of employing the proposed smart healthcare 
solution set. – Establishing the essential components and innovative AI solution 
models in healthcare. – Providing the latest information and trends from research 
undergoing worldwide by deploying advanced AI models for smart healthcare [34].
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The combination of AI and machine learning in concert with big data analytics 
is proposed as a solution to make healthcare smart. These smart healthcare solu-
tions possess substantial potential in both early detection and personalized treatment. 
AI-based personalized medicine using deep learning for mass data processing and 
machine learning algorithms for optimal treatment pathway recommendation are 
some common applications. Big data-driven technologies can be widely used with 
promising results as diagnosis and treatment tools for smart healthcare. The key 
purpose of this chapter is to highlight the significance of smart healthcare and its 
urgent requirement in the post-COVID world with the help of diversified intelligent 
solutions. Subsequently, the chapter presents the multifaceted dimensions of smart 
healthcare with various enabling artificial intelligence (AI) models together with 
modern medical equipment and related techniques. To benefit from these assorted 
intelligent models, there is a significant need to process multidimensional infor-
mation. Smart healthcare is an essential blend of diverse models of intelligence, 
including but not limited to big data [34, 36]. 

Emerging technologies such as artificial intelligence (AI) and modern medical 
equipment are taking the healthcare sector by storm. The arrival of sophisticated 
models of AI has helped transform healthcare from the traditional model to a more 
effective smart healthcare. This chapter discusses the implementation of various 
advanced models of AI and machine learning in the field of healthcare. A few more 
cutting-edge technologies such as the Internet of Things and edge computing are 
also looked at. The technological progression in the fields of big data and machine 
learning is cornerstone for smart healthcare, leading to novel ideas and studies. 
Given the considerable complexities and challenges posed by healthcare, promoting 
general healthcare and improving healthcare outcomes are of utmost importance. A 
mix of sophisticated technologies such as AI, mobile computing, social networks, 
cloud computing, big data, and the Internet of Things can serve multiple benefits to 
different players in the healthcare system. 

12.9 Summary 

The plethora of patient data, the potential for new treatment pathways, the long-term 
impact of treatment instead of the trial period, and a reduced discovery time for drugs 
are some of the many benefits that smart medical devices present us with. However, 
being a young and undefined field in health informatics, data is an asset in narrow 
silos with a low possibility of compatibility. Of course, a standardized data model that 
can work across different device platforms and new knowledge while discovering 
pitfalls during clinical monitoring will provide valuable information to all healthcare 
consumers. As intelligent health systems develop, more benefits are expected in 
future. With the strong build of both IT and AI, we can expect smart healthcare to 
diffuse more and more into daily lives. While ensuring privacy, improving decision 
making in many areas like wellness, prevention, and being ready even if a sudden 
illness affects a patient, early accurate diagnosis, swift optimal treatment, and rapid
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recovery can be a reality. Healthcare delivery today includes the rapidly increasing 
role of technology in the diagnosis, monitoring, and treatment of diseases. Using AI 
in diagnosis and disease management is already playing a key role in better and rapid 
decision making. The challenges of monitoring patients who need constant care can 
also be better managed using AI and machine learning. The AI tools that we have 
today could evolve faster and prove to be a much bigger asset if we had better access 
to data. 
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Chapter 13 
Evolution of Traditional Healthcare 
to Modern Healthcare—Benefits, 
Opportunities and Challenges 

Abstract Several AI methods can be applied in the healthcare field. A simple but 
effective area where AI has already been used for some time is the image recog-
nition on radiological and ophthalmological problems. In some cases, AI software 
outperforms the experts in disease diagnosis, such as breast and lung cancer detec-
tion. Retinography tasks, such as the understanding of retina images or the detection 
of blind spot injuries due to diabetes, have also been widely studied. For instance, 
some publicly available software has been built to make diagnoses or even infer 
diseases such as macular degeneration compared to human performance for some 
datasets. The most obvious use of AI software for this is to provide faster and more 
efficient screening systems, as the proposed software provides faster solutions with 
great benefits associated with this. The use of artificial intelligence in healthcare has 
been rapidly growing and is gaining more importance progressively. AI has opened 
novel approaches in the area and enabled us to achieve solutions that were impos-
sible to think about or implement before. The rapid growth of data in the healthcare 
industry allows researchers and healthcare systems to explore and build innovative 
methods that could be used in diagnosis, early disease detection, prognosis systems, 
and many other healthcare tasks. The rapid growth of healthcare data has promoted 
an opportunity to gain new insights, develop new tools and software, and extract 
new patterns to build more accurate models and methods that ultimately turn the 
healthcare systems smarter. 

Keywords Traditional healthcare ·Modern healthcare · Healthcare evolution ·
Healthcare transformation · Healthcare system development · Healthcare 
innovation · Health service delivery
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13.1 Introduction 

A large number of the population in the world do not receive adequate medical 
care. This has raised the interest of many companies and researchers to work toward 
enhancing healthcare quality, access, and services through technological innova-
tions. The combination of technological advancements in healthcare areas such as 
medical devices, electronic health records (EHR), wearable sensors, artificial intelli-
gence, robotics, and telemedicine, with digital components such as cloud computing, 
mobile communication, and big data, has the potential to revolutionize healthcare 
[1]. The goal of smart and connected healthcare is to create a ubiquitous and adaptive 
ICT infrastructure that can integrate unobtrusively the needs, activities, and surround-
ings of individuals and healthcare staff with the available medical knowledge and 
the healthcare service processes [2]. Such integration will enable the delivery of 
evidence-based personalized healthcare to patients based on their unique conditions, 
characteristics, and the feedback provided during the care period, and will trigger 
dynamic adaptations of care plans and service processes [3]. 

Healthcare around the world is going through a digital transformation. This trans-
formation is aimed to enhance the quality of care, increase access to healthcare 
services, and reduce the cost of such services. Over the last few years, many tech-
nological developments have enabled the transformation of traditional healthcare to 
smart and connected healthcare [4]. Smart healthcare is an integration of traditional 
healthcare with information, advanced communication, and technologies, offering 
higher quality, more personalized, and on-demand services to patients [5]. 

For several years, healthcare services have followed a traditional pattern which 
is neither speedy nor secure. The patient has to wait for a long time in hospitals or 
medical centers to make an appointment with a doctor, which may take time based 
on the emergency. The major disadvantage of traditional healthcare is that the patient 
may not have proper documentation from a particular place [6]. In order to ensure 
secure and speedy healthcare services, the traditional system has to move from paper-
based services to a smart healthcare system. Any physician, specialist, and patient 
should be able to access information from anywhere at any time for security, based 
on authorization and authentication for the provided services. Since this is a large 
volume healthcare system with rapid technological advancements, we have come 
across ways to make the information smart and secure for patients. In this chapter, 
we present a survey on the transition from traditional healthcare services to smart 
healthcare services. The key contributions of the chapter are as:

• The delivery, organization, and experience of health services have undergone 
significant change as a result of the transition from traditional to modern healthcare 
systems.

• Several noteworthy case studies and success stories demonstrating the influence 
of contemporary healthcare systems.

• The rise of smart healthcare signifies a substantial change in the management and 
delivery of healthcare, propelled by developments in data analytics, technology, 
and patient-centered approaches.
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The rest of the chapter is organized as follows. Section 13.2 elaborates the founda-
tion of Traditional Healthcare system. In Sect. 13.3, the emergence of smart health-
care represents a significant shift in how healthcare is delivered and managed, driven 
by advancements in technology, data analytics, and patient-centered approaches. In 
addition, some notable case studies and success stories showcasing the impact of 
modern healthcare systems in Sect. 13.4. Some key future directions and trends 
shaping the landscape of modern healthcare in Sect. 13.5. Lastly the summary of the 
chapter is concluded in Sect. 13.6. 

13.2 Foundations of Traditional Healthcare 

According to Gordon et al., there are three main principles that “should form the basis 
of a truly effective healthcare system: exceeding patients’ expectations regarding the 
ease of access to and communication with their clinicians, rapid and streamlined 
access to evidence-based care regardless of ability to pay, and a broadened focus, 
emphasizing health promotion, disease prevention, and the potential role of health-
care as a tool of economic development and social justice”. These factors must 
be taken into consideration, not only in disease approach and healthcare provision 
but in a broader sense—in the development of population, cities and rural areas, 
political choices, and any decisions having an impact on human life. The adoption 
of such principles could support the birth and maintenance of a healthcare system 
that is sustainable over time and is strongly integrated into society—a truly smart 
healthcare model. 

In recent years, however, life expectations and other health-specific indices have 
continued to increase, and the high-grade characteristics of the system have been 
affected by well-developed challenges such as medical errors, healthcare acquisition 
costs, burnout and other work-related syndromes, quality decline, standardization 
limitations, and inefficient, unfair care models. Although a solution to these issues 
is recognized as fundamental, the roadmaps are different [7]. 

Standardization: The procedures and practices of medicine, as well as practi-
tioners, are standardized. Medical operations and diagnoses are broadly uniform 
and are replicated on national and international levels. Research represents a key 
feature, with results being released to the scientific community. Chronic, iatrogenic 
condition coverage and prolongation of life cycles: The system focuses not only 
on acute conditions but also on chronic ones, and it helps to prolong the life of 
patients. It is staffed by networks of practitioners, with an established hierarchy and 
effective health policies that favor the reinsertion of invalid citizens [8]. Coexistence 
with alternative systems: Multicultural societies often have important non-Western 
medical systems with different historical roots and with a theoretical base separate 
from current medical science principles. They may be anchored in racial or social 
fragments or may have a specific link with all citizens, as in the case of Africa’s 
primary healthcare system. Universal access: Although the specific ways in which
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this comes about differ from nation to nation, modern societies provide universal 
access to their healthcare systems, at least in some specialized areas. 

In modern times, the advancements in human knowledge have led to the establish-
ment of different formalized healthcare systems. Among them, the field of Western 
scientific medicine (or medical science), founded upon principles of modern science, 
is likely the most widely known. Its characteristics include evidence-based medical 
treatments, broad spectrum coverage with a commitment to all members of a commu-
nity, and a codified form of scope restriction. Such features and quality have led this 
system to a dominant position in many countries. The following are general charac-
teristics of the Western scientific medical system. Healthcare has always been one 
of the most important necessities for human beings. In ancient cultures, illness was 
thought to be the consequence of the anger of gods or spirits. Ancient Egyptians 
considered the body both material and spiritual and had a well-developed system of 
physical care that included both secular and sacred dimensions. In Greek civilization, 
Asclepian temples were established to exacerbate dreams and to thereby make the 
diagnosis. 

13.2.1 Scope of Traditional Healthcare 

Despite the widespread development of telemedicine systems across the world, which 
enable doctors to consult patients that are located at a distance, helping reduce the 
need for hospital admissions, particularly for patients in remote locations, the vast 
majority of healthcare interactions in traditional healthcare systems are face-to-face. 
This is because a large set of healthcare services usually require physical exam-
ination or medication, and associated actions are taken in a face-to-face mode. 
Latest advances in information and communication technology (ICT), combined 
with increasing external pressures that healthcare systems face, such as increasing 
demands from an aging population, rising healthcare costs, and shortages of health-
care professionals, have led to the development and deployment of smart healthcare 
systems, which are also referred to as connected healthcare, e-health, or digital health 
[9]. 

Traditional healthcare involves a licensed professional (doctor or nurse) providing 
services to a patient in an office, clinic, or hospital. It is then essential to list 
some characteristics of traditional healthcare systems [10]. First, they are typically 
setting-bound and rely on specialized healthcare settings such as hospitals, clinics, 
and healthcare staff residences. Second, they are infrastructure-bound, relying on 
specific healthcare infrastructure elements (buildings, beds, waiting rooms, cabi-
nets) for delivering healthcare services. Third, they are time-bound, necessitating 
healthcare service provision during working or occasional emergency hours. Time, 
infrastructure, and setting-bound nature of traditional healthcare all imply physical 
presence requirements for healthcare staff and patients to properly organize and 
execute healthcare processes.
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13.2.2 Historical Overview 

Researchers have discovered anthropological evidence that the earliest civilizations 
in Mesopotamia and Egypt had already incorporated various forms of medical knowl-
edge. Mesopotamian medical knowledge derived from a number of myths and sagas 
handed down from previous civilizations [11]. One of the most influential figures 
in the vast field of Mesopotamian medicine was Esagil-kin-apli, the author of a 
collection of 36 therapeutic treatments that form the core of ancient Babylonian 
and Assyrian medical knowledge. By contrast, in the case of ancient Egypt, our 
primary source is the Ebers Papyrus dating from the second millennium BCE, which 
contains approximately 700 therapeutic recipes for a large number of diseases [12]. 
The Papyrus contains a wealth of information on the treatment of infections, medical 
gynecological practices, suggestions for achieving longevity, and even prescriptions 
for contraception. The written treatment of diseases was also reflected in the initial 
Hippocratic corpus of ancient Greek literature that, relating to the field of medicines, 
has over four centuries established fundamental principles still in force today [13]. 

The history of the West is steeped in centuries of primitive, medieval, modern, 
and post-modern health systems. The first primitive age of the relationship between 
humans and their environment saw climate, hygiene, and social coexistence as prime 
determinants of health and disease. People subsisted by picking plants and hunting 
animals, using herbal remedies to treat diseases caused mainly by poor diet and 
contaminated food and water. 

13.2.3 Key Principles and Practices 

Each of the following sections discusses in-depth specific healthcare models and 
practices that can benefit from the use of advanced information technology. 

Safeguarding patient safety and ensuring care of the highest quality is a top priority 
in healthcare. Some of the key principles to ensure patient safety and continuous 
improvement in healthcare quality include: focusing on the care delivery process, 
not just the outcomes; continually monitoring care processes and identifying risk 
factors for adverse events; targeting resources on improving performance in areas 
that need improvement; using information technology and evidence-based care; and 
engaging the clinical staff in the process and rewarding their involvement in health-
care management and continuous performance improvement. In many cases, use of 
advanced information technology products can provide a bridge between the core 
healthcare practices and the technological advances that are being harnessed for their 
development [14]. 

Common healthcare planning and operation management principles include: 
using evidence-based guidelines and protocols to reduce practice variation; devel-
oping and monitoring performance measures; using automated approaches for 
demand management; providing just-in-time processes to enhance patient flow and
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reduce inpatient bed length of stay; scheduling healthcare resources based on supply 
and demand; and optimizing surgical and perianesthesia patient flow, to name a few. 
Not only do these practices improve the delivery of care, they also make use of the 
information generated throughout the delivery system [9]. 

While healthcare systems around the world are unique, there are common prin-
ciples and practices that can be applied to improve operations as well as the overall 
safety, quality, and efficiency of care. These healthcare principles and practices cover 
three primary areas: planning and operations management, patient safety and quality, 
and use of information technology to improve healthcare processes. 

13.3 Emergence of Smart Healthcare 

In rapidly aging societies the world over, and with a growing global population that 
is living longer, we live in an era in which health is considered more important than 
ever before by a large number of people. For the first time in history, the number 
of elderly people in countries such as Japan and Italy has now surpassed 20% of 
the entire population. In addition, this health-consciousness is evident as well in 
the growing popularity of steady-state bicycle training, jogging, and the changes 
in food being consumed, which are moving toward more individualized diets that 
avoid processed foods [15]. Moreover, the development of smartwatches and other 
monitoring equipment that enable the collection of “lifelog-type” personal biological 
parameters information, such as steps taken, calorie consumption, kilometers jogged, 
and heart rate, demonstrate that this trend is increasing. Lifelog-type parameters, 
combined with daily food logs, would provide a comprehensive database that would 
enable people to gain a better understanding of their own body’s functions [16]. 

Individualized healthcare that meets the diverse needs of people is required in 
the rapidly aging society. Such healthcare can be enabled by connecting the various 
data associated with people’s lifelogs and biological parameters and applying both 
conclusive evidence provided by medical professionals, as well as knowledge from 
academic principles that are based on experiences and reasoning accumulated as 
tacit knowledge. We refer to such healthcare as “lifelog-based healthcare” (LHC). 
We have been developing LHC techniques that quantify diverse human activities 
using accumulated field experiences, and bio-physiological state sensing technology 
that acquires condition information as medical professionals review over very long 
periods. By combining and using these types of healthcare technologies, it is possible 
for individuals to have their health monitored in daily life. This study is a review of 
recent results associated with LHC so far achieved by our group. It also contains a 
discussion of the key research challenges that should be addressed in future to further 
Lifelog-based Healthcare (LHC) [17].
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13.3.1 Concepts Behind Smart Healthcare 

It is the concept that encompasses the integration of smart systems in the health 
field, incorporating intelligent elements that implement communication functionality 
between environments and the people who use it, being proactive and preventive in 
nature [18–20]. The possibility of complete self-diagnosis and treatment initiating 
communication with a medical professional, avoiding unnecessarily overloading the 
system, has made smart healthcare systems increasingly necessary [21]. The figure 
shows the concept by illustrating the whole process. First, a physical parameter is 
needed, acquired thanks to a set of intelligent sensors that capture useful informa-
tion which is converted through data mining, data analysis, advanced analysis and 
software. In the presence of certain data, the intelligent system suggests a series 
of actions. Finally, these can be both presentations to the patient according to the 
medical diagnosis provided, as well as concepts that help the person to continue 
taking care of his health. The decision-making process flows in two directions, one 
vertical and the other a bidirectional concept. 

Like other activities, the knowledge and use of information systems is of great 
importance in healthcare. Along with advances in medical technology, it is trans-
forming traditional healthcare into intelligent or smart healthcare. While traditional 
healthcare is based on the principles of diagnosing disease and providing effective 
medical care, its smart predecessor not only involves prevention and early detection of 
diseases, but also gives a greater role to the patient or citizen and their social environ-
ment. This section will define the concept of a smart hospital, together with the main 
challenges and benefits of integrating information systems in healthcare. In general 
terms, smart healthcare combines data acquisition (for medical staff and patients), 
processing (management of care processes), and decision-making to provide timely 
and professional patient care, providing the highest possible safety to both patients 
and caregivers with technological support. Its main objective is to prevent patients 
from entering the hospital and, if they have to, discharge them quickly. This allows 
hospital resources to be focused only on acute patients [9, 22]. 

13.3.2 Technological Enablers 

Preventive care has been made easier by techniques like the monitoring and analysis 
of the biologic parameters of the body [23–25]. Researchers are some way forward, 
using non-intrusive devices that monitor parameters of the body, such as heartbeat, 
and electrical potentials that denote neurologic activity. They employ “sensorized 
clothing,” which has small sensors that detect warped patterns of emitted light. 
These devices and several others are capturing much of the biologic information, 
and the harnessing and analysis of their data are enabling predictions of the indi-
vidual’s physical health and detection of the occurrence of diseases. Capturing and 
analyzing data from these devices, along with understanding a human’s life pattern,
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may support future medical diagnoses from a purely digital approach, providing 
substantial benefits to society and making healthcare cheaper [26]. 

Several technologies are enabling the concept of digital healthcare and promoting 
faster and more efficient healthcare experiences. These can be divided into different 
types, such as the Internet of Medical Things (IoMT), smartphones and mobile apps, 
Big Data, optimization, and data discovery. These technologies create high expec-
tations because they increase our awareness about health, individualizing the way 
we look at our bodies with the support of wearables, smart cosmeceuticals, and 
other devices. They help with self-surveillance by tracking several body parameters, 
leveraging our control over the evolutionary pace and path of our bodies. These tech-
nologies are the world’s first preventive medical care service, enabling us to think 
about our health each and every second [27]. 

13.3.3 Technological Foundations 

Digital, connected, and smart healthcare is the result of reducing to practice advanced 
concepts, models, and theories of information, automation, and intelligent sciences 
applied to the domain of healthcare. Central to modern healthcare are, for example, 
the models and theories of health informatics, e-Health, and telemedicine, which 
have, in fact, enabled some degree of healthcare ICT implementations [28]. Recent 
advances of connected and smart healthcare are built upon and extend these existing 
domains of healthcare informatics and technologies. They are defined, for example, 
by enhancing their connectivity with physical and logical linkages that enable 
new forms of information, knowledge, and intelligent capabilities. The founda-
tional concepts, models, and theories of healthcare of these advanced developments, 
however, are often buried and invisible. In the remainder of this section, we therefore 
reveal the technological foundations of smart and connected healthcare, uncovering 
its basic building blocks and infrastructure [29]. 

Wireless communications technology enables untethered connections that are 
essential for mobile and wearable devices, sensors, and actuators to be integrated 
with the human body, and embedded and cyber-physical systems to be installed in 
the physical environments of healthcare facilities and communities. The internet tech-
nology allows diverse components, systems, and subsystems of healthcare to be logi-
cally connected, enabling information and knowledge about healthcare to be seam-
lessly integrated and shared. Computing and data/information processing technolo-
gies provide the brains of connected healthcare systems, enabling distributed intel-
ligence to be effectively implemented so that data and information are transformed 
into useful knowledge and wisdom for decision-making and action by healthcare 
stakeholders [30]. 

The centerpiece of recent advances in digital, connected, and smart healthcare 
is information and communication technologies (ICTs). Prominent among these 
ICTs are wireless communications, the internet, computing, and data/information
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processing technologies, fundamental to the design and operation of the ICT 
infrastructure of smart and connected healthcare systems. 

13.3.4 Internet of Things (IoT) in Healthcare 

However, IoT in the healthcare domain faces several challenges. Firstly, data privacy 
and security are the most serious concerns for stakeholders. Secondly, the huge 
amount of data generated by IoT devices can exceed the capacity of existing networks 
and systems. Thirdly, the lack of interoperability and standards and the high cost of 
IoT technology hinder the deployment and operation of IoT systems in the health-
care domain. To address these challenges, research, testing, and the collaboration of 
regulators, policymakers, and industry stakeholders are needed. The ultimate result 
of the effort to overcome these challenges is the creation of IoT systems that reduce 
the cost of healthcare, improve the quality of medical services, increase accessibility, 
and make personalized medicine a reality. This offers considerable opportunities for 
various industries to create innovative IoT applications and services in the healthcare 
domain [31]. 

The Internet of Things (IoT) is a key enabler of the smart healthcare paradigm. 
IoT represents a network of uniquely identifiable interconnected devices that commu-
nicate without human interaction using standard and proprietary internet protocols. 
These devices, which can be specialized (sensing, actuating, data processing) or non-
specialized (smartphones, tablets, laptops), work in concert to create added value for 
services created in the interest of individuals and society. The IoT growth trend is 
clear as new applications and services are constructed by various industries [32]. 
In the healthcare domain, IoT technology connects medical devices and equipment, 
enabling them to communicate diagnostic information directly to healthcare manage-
ment systems in real time. The patients and the caregivers will also be able to exchange 
information with the systems using the internet in order to report medical status and 
receive medical instructions. 

13.3.5 Data Analytics and Artificial Intelligence 
in Healthcare 

In accordance with the rich volume of literature that investigates the challenges 
and the opportunities of data analytics and AI technologies in healthcare, such as 
expert interviews, academic research, industry reports, and public documents, in this 
section, we provide an elaborative view of the current landscape of the application 
of data analytics and AI technologies in healthcare, summarize the state-of-the-art 
projects and companies, develop a taxonomy of healthcare data analytics and AI 
technologies, and discuss the major challenges and opportunities in the application



312 13 Evolution of Traditional Healthcare to Modern Healthcare—Benefits …

of data analytics and AI technologies in the healthcare sector. Finally, we provide 
research implications and recommendations [33]. 

Despite the promises and the derived opportunities from data analytics and AI 
technologies, there exist significant challenges in the application of these technolo-
gies in the healthcare arena. The challenges span not only the technical concerns, such 
as the privacy and security of healthcare data, the transparency and accountability 
of AI technologies, and the vulnerability to adversarial attacks of the intelligence 
models, but also the overarching concerns related to the perceptions and readiness 
of the stakeholders in the healthcare ecosystem [34]. 

In the era of big data, a substantial amount of data in various forms can be generated 
from diverse sources along the lifecycle of healthcare processes, from the knowledge 
discovery and data gathering to data curation and annotation, to data modeling and 
analysis, and to development and deployment of data-driven and personalized health 
decision and action systems. Data and analytics are both the lifeline and the hidden 
force of the future health ecosystem [35]. Data analytics and artificial intelligence 
technologies possess the potential to enhance healthcare in a variety of aspects, such 
as improving health outcomes, promoting operational efficiency, and advancing the 
innovation of the healthcare process and system. 

13.3.6 Machine Learning Applications in Healthcare 

Machine learning is used in personalized medicine, which is designed for customiza-
tion of healthcare, with decisions, practices, and/or products being tailored to indi-
vidual patient characteristics. It can also help in the early discovery of the spread 
of infectious disease. Because of its potential role in transforming the healthcare 
industry, ML has become an interdisciplinary research area involving computer 
science, statistics, and healthcare service. Over the last ten years, the applications of 
ML in the field of healthcare have surged. Aspects of the healthcare system that have 
benefited from machine learning include risk evaluation, medical imaging, capturing 
healthcare information, bioinformatics, and general healthcare management [36]. 
Machine learning can help discover complex interactions between the features and 
outcomes in these domains. 

Machine learning (ML) covers a set of techniques that allow computers to learn 
from experience and discern complex patterns in vast, possibly high-dimensional 
data, and make intelligent decisions for prediction or diagnostic purposes. It has huge 
potential to transform the operation and structure of the healthcare system. Machine 
learning applications in healthcare are designed to aid in diagnosing diseases, 
assessing and predicting patient conditions, delivering treatment, and managing 
chronic conditions, and can help bring about precision and individualized medicine 
[37] (The Applications of AI in smart healthcare are shown in Fig. 13.1).
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Fig. 13.1 Applications of AI in smart healthcare 

13.3.7 Telemedicine and Remote Patient Monitoring 

Smart and connected telemedicine services are discussed, starting with the state-of-
the-art in specialty telemedicine and the enabling technologies, and then going into 
the best practices model for building and deploying sustainable telemedicine services. 
This model, which has been defined by the experience of the UPMC Center for 
Connected Medicine, is then applied to the outline of a process for rapidly building, 
piloting, and scaling national or global telemedicine services [38]. The transforma-
tion that specialty telemedicine is bringing to healthcare through new quality and 
outcomes measures and through the use of big data for both research and business 
intelligence is discussed. The chapter concludes with a vision of the future evolution 
of specialty telemedicine services. 

Telemedicine is a rapidly evolving area in healthcare enabled by the convergence 
of advanced technologies. It is changing the way care is delivered and presents 
both new opportunities and challenges. This chapter provides an up-to-date review 
of the status of telemedicine and remote patient monitoring, including the latest 
innovations, the challenges that must be addressed to realize its full potential in 
improving outcomes and access while controlling costs, and the new and emerging
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business models [39]. Successful commercial implementations in several specialty 
areas define the factors that are critical to adoption, and scaling of telemedicine 
services both nationally and globally is discussed. Finally, the transformation that 
telemedicine is empowering in healthcare from volume- to value-based is addressed 
in terms of the new quality and outcome measures that are being enabled and the big 
data that will result from the large-scale implementation of telemedicine services. 

13.3.8 Wearable Health Technology 

There are many advantages to using wearable sensors. First, they can be integrated 
into daily use easily. Second, they enable continuous sensing over long periods of 
time. Third, sensor data can be collected in the real world rather than in a laboratory 
setting. Finally, wearable sensors can reduce the self-reporting burden on users by 
automatically detecting certain events or activities. Currently, popular wearables 
include the Nike FuelBand, Jawbone UP, Fitbit, and a number of smart watches. These 
devices primarily focus on tracking physical activities, such as steps taken, calories 
burned, distance traveled, and sleep quality. While there has been an increasing 
interest in using such commercial devices in research, the reliability and validity 
of these devices have not been well-studied compared to traditional non-wearable 
sensors, especially in the new areas of sensing [40]. 

Today, wearable technologies are usually sensors that are attached to a computing 
device that people can wear as accessories or clothes. Wearable sensors can easily 
collect information from the body and the environment in a user-friendly way. People 
can then utilize this data to gain new insights, improve their lives, and share infor-
mation efficiently. The concept of the Quantified Self, in which individuals track 
different types of activities on a regular basis with the help of technology, is often 
associated with wearable sensors that track body data. It is becoming increasingly 
popular and new devices are constantly being developed. In the area of emotion and 
stress research, wearable sensors are also being used to collect physiological data and 
correlate it with other data modalities, such as location, activity, or user-generated 
content [41]. 

13.3.9 Cybersecurity in Healthcare Systems 

The growing number of cybersecurity incidents is a clear indicator of the need for a 
strong, secure posture to protect patient data confidentiality and system availability 
in the Cyber Physical System (CPS), Internet of Things (IoT), and cloud computing 
era of healthcare systems. These advanced technologies enhance the quality of care, 
decrease the cost of care, and improve the efficiency of care. Simultaneously, they 
create a new vulnerability for malware attacks, in which the consequences can be 
fatal when an attack successfully targets medical devices performing patient care and
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monitoring. The consequences of a cyber-attack on patient treatment and diagnosis 
through Life Critical Medical Devices (LCMDs) are discussed. The attack surface 
of LCMDs as well as security gaps are analyzed [42]. 

Cybersecurity in healthcare is extremely important as it ensures patient data is 
protected and kept confidential. Currently, threats and risks are increasing from 
various levels, both internal and external, to healthcare systems. Thus, it is necessary 
to develop and enforce cybersecurity measures through regulation to make sure all 
healthcare stakeholders are taking it seriously. This chapter discusses the importance 
of security in healthcare, laws and regulations surrounding protected health infor-
mation, various types of threats in healthcare, and recommendations for securing 
healthcare systems [43]. 

13.3.10 Regulatory and Ethical Considerations 

Healthcare is going through a digital transformation with the development of break-
through technologies, including artificial intelligence (AI), robotics, and the Internet-
of-Things (IoT). By connecting patients, caregivers, and medical equipment, data can 
be collected and analyzed in real-time, which personalizes and improves the quality 
of patient care and also increases the overall operational efficiency of the health-
care environment. For example, with advanced deep learning techniques, intelligent 
medical diagnosis systems can achieve an accuracy level that is comparable to human 
experts by analyzing and learning from a large amount of medical imaging data [44]. 
With the development of connected healthcare, patients’ health conditions can be 
monitored at home, which reduces the length of hospital stays and the risk of hospital-
acquired infections. In addition, the healthcare supply chain can be optimized with 
IoT technology by tracking and monitoring the conditions of medical inventory and 
transportation in real-time. It also helps oversee the compound medication production 
processes with sensor systems. 

The transformation of the healthcare sector with innovative digital technolo-
gies, including AI, Internet-of-Things (IoT), and robotics, has created breakthrough 
healthcare applications. Before these data-driven and smart healthcare techniques 
become widely used, besides addressing the challenges related to cybersecurity, 
data privacy, and the accuracy of intelligent algorithms, regulatory frameworks and 
ethical guidelines must be established and implemented. In this chapter, we discuss 
the promising applications of smart healthcare, review some of the regulations and 
ethical guidelines that are developed for ensuring the safe and appropriate use of 
these evolving technologies, and present a few healthcare projects that follow these 
regulations and guidelines [45].
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13.3.11 Impact on Healthcare Delivery and Patient Outcomes 

Several areas of healthcare delivery that are or will be impacted by connected health 
are telemedicine, home healthcare, and medication adherence. It is important for 
healthcare providers to understand how these changes will affect their role and to 
proactively address any concerns that may arise during the transition. Moreover, to 
fully realize the benefits of connected health, the entire healthcare system must be 
transformed from a system that is reactive and hospital-centered to one that is proac-
tive and patient-centered. This chapter describes promising innovations enabled by 
connected health within telemedicine, home healthcare, and medication adherence; 
discusses the challenges that must be addressed in order to realize the full potential 
of connected health; and outlines opportunities for future research and development. 

Connected health holds great promise to transform healthcare delivery and 
improve patient outcomes. By continuously monitoring a patient’s health status 
regardless of the patient’s location and transmitting that information in real time to 
the patient’s healthcare provider, connected health has the potential to enable patient-
centered care, improve care team collaboration, reduce hospital readmissions, and 
expedite recovery. The shift in focus from treatment to prevention and early detec-
tion of illness, enabled by connected health, not only improves patient outcomes but 
also reduces healthcare costs. However, in order for connected health applications to 
be effective and widely adopted, they must be designed in a way that alleviates the 
major concerns relating to privacy and security of patient data. 

13.3.12 Enhanced Clinical Decision-Making 

The formation of clinical informatics as a recognized specialty in the medical field 
in the United States and the subsequent inclusion of related topics in medical board 
certifications are significant milestones underscoring the importance of clinical infor-
matics in the healthcare domain. The integration of specialized knowledge and skills 
related to clinical informatics with those from other healthcare professions provides 
invaluable support by optimizing decision-making processes that occur within the 
clinical setting. Such integration routinely results in positive patient health outcome 
improvements being identified and subsequently addressed through the use of new 
approaches, or the modification of existing processes, or healthcare policy changes. 

Health informatics is the application of informatics in areas related to health. 
It comprises multiple areas, including those related to the theoretical and practical 
considerations of acquiring, storing, managing, accessing, and processing informa-
tion, knowledge, and data. By acting as a catalyst to enhance the decision-making of 
healthcare professionals, patients, and other stakeholders, health informatics enables 
the improvement of health outcomes at all levels. Clinical informatics is an applied
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subdiscipline of health informatics. It focuses on the use of informatics in rela-
tion to the specialized knowledge possessed by healthcare professionals, with the 
overarching goal of enhancing individual and population health outcomes. 

13.4 Case Studies and Success Stories 

The examination of smart technologies in hospitals and elder care demonstrates that 
they can support the reorganization of healthcare so that care decisions are made in 
collaboration with patients and in coordination with professionals across multiple 
settings, and where hospital-based activity is focused on more acute care that can 
only take place in a hospital and for which de-hospitalization replaces hospitalization 
[46]. This transformation recognizes that the hospital is not the endpoint of health-
care. Rather, it is a collection of resources that can combine in many different ways to 
deliver on the continuum of care that an individual person requires. This continuum 
does not sit within the hospital. This is despite hospital spending accounting for 
the vast majority of the overall budget of the health and care system. The cross-
cutting effect of smart technologies in supporting a rethinking of healthcare can 
be observed in the role that they can play in promoting public health and effec-
tive behavior change. Smart technologies can provide an important tool to support 
personalized health care by using tailored information and communications systems, 
including mobile applications. In addition, the development and implementation of 
smart cities and smart homes could have significant positive influences on public 
health by providing safe living conditions, social interaction, and physical activity for 
residents. The evidence for community-based programs particularly points toward 
the higher cost-effectiveness of technology-enabled solutions for managing long-
term health conditions. In the next section, the chapter moves to discuss the broader 
implications of the deployment of smart technologies in healthcare [6]. 

To better understand the potential of breakthroughs in healthcare, this section 
portrays a number of case studies and success stories of ICT integrated healthcare. 
Through these case studies, it is proposed to showcase that technology can gradually 
transform healthcare delivery from almost entirely hospital-based care to packages 
of different activities, some of which can occur in the home or the workplace. This 
will require a radical rethinking of the design of healthcare of the future. It is also, 
however, part of the roadmap to achieving sustainable health systems. It can help 
mitigate many of the challenges that conventional thinking about the future role of 
healthcare might generate—capacity constraints for hospitals and other health and 
social care establishments, and a growing financial burden associated with increasing 
demand in the face of technological progress. For the transformation to succeed, it 
will need to take a systems perspective: seeing healthcare not as a series of individual 
settings and solutions but rather as an integrated ecosystem, encompassing many 
sectors of the economy. The remainder of this section is structured, in turn, around 
the deployment of smart technologies in the following four sub-domains of healthcare
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service provision: hospitals, elderly care, public health, and the management of long-
term health conditions. 

13.4.1 Implementation Examples 

The healthcare-as-a-service concept assumes that the healthcare resources (e.g., 
medical professionals, equipment, and healthcare services) are managed by a single 
organization. It increases the efficiency and the quality of the healthcare services 
provided with the help of a fee-for-service model. Healthcare-as-a-service could 
both create new businesses and generate massive profits by leveraging new business 
models in various healthcare services. However, each smart healthcare application 
has some limitations and implementation issues on certain technical areas such as 
data analysis, data traffic, user acceptability, data privacy, and retrieval time. In this 
chapter, several examples are discussed with their strengths and challenges [47]. 

There are several ways to implement smart healthcare applications. Examples 
include home monitoring, a smart hospital for patient monitoring, smart healthcare 
center, and healthcare-as-a-service [48]. Smart homes are equipped with various 
types of sensors that collect household activity information, lifestyle information, 
and physiological signals. Furthermore, the smart hospital has been developed with 
the integration of information and communication technologies (ICT) for inpatients. 
At smart healthcare centers, various health services are provided to treat patients and 
maintain health. Physicians in the remote healthcare consultation centers and referral 
centers perform real-time consultation and patient follow-up implemented through 
the use of ICT [49]. 

In telemedicine, IoT-based home monitoring systems are used for continuous 
health monitoring of a patient to manage chronic disease conditions. It enables 
sharing health problems remotely and providing advice and possible treatment by 
an expert. Early detection or risk prediction of diseases is effective for dealing with 
them through prevention measures or health maintenance services. 

Existing smart healthcare applications and implementations can provide realistic 
insights for creating and implementing real-world smart health systems capable of 
achieving a paradigm shift in the traditional healthcare domain. Based on its huge 
potential to meet several healthcare challenges, IoT is being extensively used in 
healthcare applications and services currently. Smart healthcare applications specific 
to telemedicine, preventive medicine, healthcare management, and smart living are 
discussed as follows. 

13.4.2 Impact Assessment 

The final result confirms that—when applied to specific population-based healthcare 
problems, such as the prevention of hypertension and diabetes, the management of
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chronic patients or health guarantee services for critical population typologies— 
the widespread technological e-health impact on community services might make a 
substantial difference in the lives of patients living in rural mountain areas and in the 
savings in care costs for local healthcare services. 

To deepen the analysis on how healthcare shifts with the introduction of remote 
healthcare delivery models and what the actual impact of these initiatives on health-
care costs (broadly conceived) and scope (improving efficacy), we adopted the evalu-
ation framework used by Arora et al.: the Economic Interaction Model (EIM), which 
includes effects both vertical (on hospital and healthcare facilities management) and 
horizontal (on markets for goods and services and the living conditions of regional 
economies) of a service investing in a region. In light of the recent methods in the 
CBA field, a methodology to fill out a project evaluation form has been proposed 
and used. 

13.5 Future Directions and Trends 

The future direction of this field includes, specifically, (1) health data integration, 
(2) research in constrained settings, for example, (3) discovery for rare disease and 
personalized medicine, (4) health metric shifts, (5) targeting cost/benefit ratios, and 
(6) reinforcement learning for health. Although a large fraction of healthcare data is 
still not directly tied to a single patient or single event, intensive research is crucial 
to filling the gap by utilizing improved prediction models, programming platforms, 
or health data representation [50]. Significant different characteristics of health-
care data impose great challenges to building prediction or optimization models. 
Various real-world problems may refer to research in constrained settings, including 
a small number of learning data, specifically fewer usable training samples and 
clinical constraints such as electronic medical records, and laborious rechecking 
or diagnosing. The future of healthcare research should target cost/benefit ratios 
coupled with patient outcomes, drug effectiveness, medical-service optimization, 
and administrative overhead reductions. Reinforcement learning provides a more 
flexible framework to model sequential patient trajectories to treat patients and refine 
patient treatment policies based on collected data while avoiding potential biases [51, 
52]. The authors can anticipate that reinforcement learning will contribute to policy 
development or alignment, resource management, and value-based care in the long 
term. 

13.5.1 Artificial Intelligence and Machine Learning 

In healthcare, the use of AI may be particularly powerful but also raises uniquely 
challenging ethical concerns. A demanding discipline: mesoscale models. One of the 
most challenging aspects of this opportunity space is where simulation and mining
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become increasingly ambitious as we move from traditional decision optimization 
space to predictive machine learning models. Management of multimodal data in 
different conditions from multiple sources in the healthcare domain and frequent 
fluctuations of decision boundaries in uncertain data products have been very chal-
lenging for existing AI technologies and their deployments. Traditional AI algorithms 
do not yet outperform skilled human clinicians, nurses, and care workers in most of 
the wellness tasks, and they are generally treated as a supplementary tool for decision-
making [53]. Even though with these considerations, various smart healthcare topics 
are on the edge of creating a pivotal role in influencing patient wellness in the future. 

Artificial intelligence (AI) and machine learning, along with deep learning, are 
propelling diversification in personalized healthcare. A large amount of data is 
collected daily, and this collection prompts the research of personalized health-
care and artificial intelligence [54]. Machine learning provides a methodology to 
winnow through the noise: the myriad of data and models are cherry-picked to model 
trial protocols, candidate agents, and stratify patients for various therapies. Various 
machine learning algorithms, such as support vector machines, nearest neighbors, 
neural networks, decision trees, generalized linear models, regularized linear models, 
ensemble methods, are commonly used in healthcare in the prediction of diseases, 
healthcare operations, patient health monitoring, and many other applications [55]. 

13.5.2 Internet of Medical Things (IoMT) 

Petabytes of health-related data are, and will be collected, on patients. This incred-
ible medical record powerfully contributes to the data-driven treatment of patients. 
Nonetheless, respecting the central role of patients’ data, ethical and legal issues 
must be tackled: the topic is so relevant that it deserves performing the collec-
tion, analysis, and interpretation of data in agreement with specified guidelines [56]. 
Researchers should ensure that evaluators, participants, and readers understand the 
ethical implications of research and information presented. Measures to address the 
ethical components are indicated; a potential cost to both researchers and healthcare 
is associated with not following ethical measures. In any case, data-driven medicine 
lends itself even to personal-elevating organisms, ethically improper evaluations. 
Finally, development is fundamental too: the new paradigm of IoMT shall not be 
held hostage by data challenging [57]. 

The Internet of Medical Things (IoMT) generally employs wearable or 
implantable devices, sensors, and other smart gadgets to collect and analyze patient 
data at a large scale. While such data used to be collected within the hospital, with 
IoMT tools, a lot of pertinent clinical markers and diagnostic modalities may be 
performed continuously and even beyond hospital premises. The enabling factor 
of such “disruptive technology” is represented by miniaturization of electronics, 
biosensorics, and the impressive development of low-power wireless communication. 
Furthermore, as some sophisticated datasets require even computational power to be 
processed in the order of teraFlops, computation power available from cloud services
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may be employed [47]. Nonetheless, very strict constraints need to be fulfilled to 
make such devices trusted devices, particularly when they are used to control treat-
ments. The confidentiality, integrity, and authenticity of data collected, stored, and 
elaborated for the health of a patient must be warranted from intrusion and alteration. 
This is particularly relevant when the health data of a patient represent a pattern, and 
public or even worse for-profit companies may seek at acquiring such a pattern for 
many unethical aims [58]. 

The Internet of Medical Things (IoMT) refers to the network of medical devices, 
applications, and systems that are connected to the internet. With IoMT, healthcare 
providers and patients can access and share real-time data, leading to improved diag-
noses, treatment, and overall patient care. IoMT devices include wearable sensors, 
remote monitoring systems, medical robots, and smart implants, among others. 
These devices collect and transmit data, enabling healthcare professionals to monitor 
patients remotely, provide timely interventions, and make data-driven decisions. 
IoMT has the potential to revolutionize healthcare by increasing efficiency, reducing 
costs, and enhancing patient outcomes [59]. 

13.6 Summary 

However, to move from traditional to smart healthcare, the policy has to protect 
privacy and meet the necessities of quality and knowledge management and be effi-
cient and affordable—a smart healthcare system. Smart information management is 
an interactive and iterative loop which needs to be looked beyond. An alliance of 
skills is needed to reach the smart healthcare system. Indeed, the smart healthcare 
model indicates the patient and family as one of the stakeholders in care with specific 
roles and responsibilities. This implies implications that have to be considered in 
policy design and in professional education. In this connection, medical researchers, 
health service providers, and policy designers must then make this model a reality to 
transform a new smart healthcare model for widespread international adoption. The 
traditional mode of healthcare management is reactive in nature—it waits for diseases 
to occur and then takes corrective measures. This approach has led to skyrocketing 
healthcare expenses all over the world. There is a dire need for the transforma-
tion of traditional healthcare to smart healthcare, which is an intelligent innovation 
with data-driven digital-based platforms between patients, healthcare managers, and 
stakeholders, to provide proper personal and family healthcare management. The 
smart healthcare system refers to digital solutions that provide high-quality health-
care for individuals. Reportedly, a smart healthcare system can reduce the manage-
ment costs of chronic diseases and improve patient outcomes in terms of treatment 
adherence, quality of life, symptom monitoring, and promoting early prevention. As 
a user, smart healthcare also reduces wasted time through waiting for unaffordable 
and long periods. It can also lead to improved workflow and support the interests of 
patients as central stakeholders in healthcare.
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Smart healthcare is here to empower us to live healthier lives, mitigate chronic 
conditions, manage disease at home or on a journey, and improve communities’ 
healthcare public services. Continuously advancing, the speed and cost at which 
new products and services are now developed can help transform traditional health-
care into smart healthcare, from point of care to community healthcare, hospital 
care, primary care, clinics, general practices, and individual healthcare, weaving us 
into an aggregate model of precision healthcare. Incorporating disciplines such as 
healthcare AI, machine learning, medical IoT, healthcare analytics, wearable tech-
nologies, e-Health, healthcare robots, telemedicine, smart hospitals, smart clinics, 
and patient and public participation, smart healthcare enhances our quality of life, 
promotes well-being, supports patients at different stages of their care journey, and 
enables enhanced services to be delivered by healthcare providers. The digital trans-
formation of a hospital through e-Health, enabled by procuring medical-grade routers 
and networking gear, as well as conducting well-architected e-Health carries excess 
benefits. There are three revolutions in smart healthcare: digitization, connectivity, 
and data-driven intelligence. 

In the face of numerous promising but still risky technologies, it is incumbent 
upon the government and professional regulatory bodies to design a light but strong 
responsive governance mechanism and process that will allow for scientific and 
technological advancement in healthcare. A substantial increase in public and private 
investment in digital health and smart healthcare is necessary for developing further 
solutions that are affordable, reliable, interoperable, timely, inclusive, and human-
centered. Legislative, regulatory, legal, and ethical concerns must be addressed. There 
is still a tremendous amount of research and education to be done. In particular, it 
is vital to increase awareness and promote training in the unique aspects of digital 
health among healthcare professionals and students. The importance of customer-
friendly design, participatory design, and co-creation of value between the users 
and the new digital health system must not be underestimated. It is vital to develop 
and offer user-centered, efficient, ethical and technical expertise and expert support 
in order to ensure the success, impact, and the much-needed transition to smart 
healthcare of this Health 6.0 paradigm shift. The health needs of the users should be 
the real winner over this development. We recommend the establishment of a new 
organization, competent to take into account the legal, ethical, social, and technical 
aspects of digital health—to discuss, promote, help when necessary, and enforce 
principles and governance, quality assurance, and ethical issues such as privacy and 
data protection. 

The transformation to smart healthcare will profoundly and holistically affect 
every aspect of healthcare. All healthcare stakeholders, whether at the level of health 
system administration, center of excellence for smart healthcare to be established in 
every hospital, professional association, and individual healthcare providers such as 
physicians and pharmacists, and including insurance companies, medical devices and 
pharmaceutical companies, should join hands and form public–private multistake-
holder partnerships to facilitate healthcare system transformation. Research and inno-
vation in medical science and engineering, leveraging artificial intelligence, internet 
of things, big data analytics, even brain-machine interface and computer–human
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interaction, must be emphasized and well supported. Ethical, legal, and regulatory 
considerations have to be addressed as well. Pre- and in-service education curricula 
for all healthcare professionals should be reformed to include basic knowledge of 
smart healthcare, so that tomorrow’s healthcare workforce will be mindset-ready 
for the transformation. The last but not least, the end users of the service-patients 
and citizens-should form a partnership with healthcare systems that enable care to 
empower them to health and to lead their daily activities. 
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Chapter 14 
Analysis of AI-Bias in Modern 
Healthcare Systems 

Abstract AI (Artificial Intelligence) has provided many predictive algorithms for 
the diagnosis of many critical diseases. AI has also presented segmentation algo-
rithms which can segment the desired area from the background for better diagnostic 
results. But AI-predictive algorithms suffer from AI-bias either due to training data 
or algorithmic design. This AI-bias leads to variability and inaccuracies in the predic-
tive results which may have severe impact on treatment and clinical deployment of 
the model. Hence, it is necessary to evaluate the accountability of AI-bias in medical 
systems. Analysis of bias at various levels of AI-models in medical system design 
can prevent severity in the medical outcomes. In this chapter, we will highlight the 
bias accountability at various stages of AI-models. We will also review the various 
reasons and mitigation techniques to minimize the impact of AI-bias in medical 
systems. 

Keywords Human bias · Data bias · Algorithmic bias · Predictive models ·
Explainability · Generalizability 

14.1 Introduction 

AI is revolutionizing many fields that includes computer vision [1, 2], education 
[3], travel [4], and many more. Healthcare industry is also realizing the potential 
of AI and providing several upgrades to the traditional system [5]. With AI-based 
decision support system, medical system is extending real-time patient monitoring, 
quick evaluation of medical imaging and robot-assisted high-risk surgeries [6]. AI has 
provided several tools for accurate monitoring, diagnosis and prognosis of patient’s 
statistics recovered from structured as well as unstructured data. AI has penetrated 
deep into the medical system, providing smarter, quicker, and accurate benefits not 
only to clinical practitioners but also to the patients. 

For the last few years, society realized the potential and benefits of AI based 
predictive methods in healthcare. Medical practitioners prefer to use AI powered 
systems to support their various medical related activities and ensuring health equity
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among patients [7, 8]. Medical staff are becoming dependent on AI based tools due to 
the wide range of options and possibilities provided by AI-based systems. However, 
it has been observed that these systems are trained on datasets which lack in gathering 
the critical aspects of a patient. Those critical aspects include information related to 
patient’s socio-demographics such as gender, age, race/ethnicity, kinship, medical 
history and many more [9]. The patient’s socio-economic status such as medical 
insurance details are also missing in the training datasets. 

Apart from the deficiency in training datasets, AI-predictive algorithms are black 
box in nature. AI algorithms lack interpretability, transparency, and fairness. Hence, 
it became necessary to evaluate the models for their appropriateness, robustness and 
accuracy [10]. AI-based predictive models in medical systems should be audited for 
quality assessment [11]. Guidelines and tools must be provided which specify the 
workflows that should be adapted to assess the quality of the AI-model over wide 
range of parameters such as interpretability, robustness, fairness, and bias. 

With the advent in technology, it became essential to evaluate AI-based medical 
models for the impact of Risk of Bias (RoB) [9]. Bias in AI-models can lead to 
unforeseen, unreliable and discriminatory outcomes which may influence patient 
care, diagnosis and treatment. The reason is implicit bias, selection bias and training 
bias in datasets. Also, the weak algorithmic design and its capabilities to interpret 
the result introduces bias in the model system. Model trained on biased data, can 
produce misrepresentative results. Implicit bias in AI-model has a negative impact on 
the relationship between the medical professional and the patient [12]. The outcomes 
from a biased model are fatal, which raises the reasonable concern for the evaluation 
of RoB in AI-model before their practical deployment. 

There are lot of examples in which AI-model has been realized to be suffered from 
bias [13]. For instance, amazon AI-based human resource software was discovered 
to be suffered from gender bias [14]. It showed high paying and better position jobs 
to male candidates rather than female applicants. The reason could be its training 
datasets that contains words which more often found on a male applicant resume 
rather than a female. In criminal justice, AI-based software which used for identi-
fying the sentence term to the criminal’s committing crime was found to be suffered 
from racial bias [15]. The software suggested harsher and stricter sentence against 
blacks (American African) than whites for the similar crime committed by them. 
Authors have explored likelihood based on questionnaire to evaluate the RoB in 
various AI-based recommendation systems [16]. In healthcare domain, algorithms 
were identified to be suffered from racial and gender bias [17]. 

The key impact of bias in AI-model is that they lack generalizability, interoper-
ability, interpretability and explainability. The data bias cannot only be introduced 
during training data selection but also it is highly dependent on data collection, gath-
ering, cleaning, and processing methods as well [18]. To test the data for its accu-
racy, completeness, diversity, and acceptability is a huge task in itself. In addition, 
there are legal law and manifestations which are country specific acts as a hurdle to 
remove the bias in the training data [19]. The incomplete specification details about 
the algorithmic design of the medical predictive model also introduce discriminatory,
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implementation and selection bias [20]. In this chapter, we have reviewed the various 
AI-based predictive for the RoB and their applicability in the real-time scenarios. 

The key objectives of this chapter are as follows:

• We have reviewed the various methods that introduce the data bias and algorithmic 
bias in the AI-based predictive models that affect the decision-making in health-
care. In addition, the propagation of bias in various stages of model development 
is explored in detail.

• The methods to mitigate various types of AI-bias are analyzed and a few pointers 
are suggested for reducing the impact of bias in AI-based predictive model. In 
addition, bias assessment tools are also evaluated for their performance to assess 
AI-model for their unbiased outcome.

• Legal manifestations in terms of data privacy, modifications and sharing rules are 
also discussed to analyze the reasons of RoB in AI-models. These manifestations 
ensure the transparency and robustness in the AI-models exploited in medical 
systems.

• Lastly, the limitations and barriers in preventing the AI-bias in the medical system 
are explored to restrict the negative outcomes due to biased model deployment in 
real-time. 

The rest of the chapter is organized as follows. Section 14.2 elaborates the signifi-
cance of analyzing the AI-bias in medical systems. The reasons for AI-bias in medical 
systems in terms of data bias and algorithmic bias are detailed in Sect. 14.3. Various 
bias assessment tools are evaluated for their appropriateness in the medical system in 
Sect. 14.4. The methods to mitigate bias from AI-models in healthcare are reviewed 
in Sect. 14.5. The limitations of bias mitigation strategies which restrict the AI-model 
to be unbiased are also detailed. Finally, the concluding remarks and future directions 
are summarized in Sect. 14.6. 

14.2 Significance of Analysis of AI-Bias in Medical Systems 

Researchers have gained interest in developing AI-based predictive models in 
medical systems for fast, accurate and efficient outcomes [21–23]. These models 
have found applications in variety of medical applications to support clinical deci-
sion making [9]. However, it has been observed that AI-based models suffer from 
AI-bias and are prone to impact the quality of clinical results significantly. In addi-
tion, AI-bias not only introduces error in the model outcomes but also, reduces the 
trust of the end users [24]. Hence, it is essential to analyze bias in AI-based medical 
systems. The following are the reasons which emphasize the necessity of analysis of 
AI-bias in medical systems.

• Big data and need of reliability 

Recently, the applications of AI-based predictive models have been increased expo-
nentially in the medical systems [5]. There is a surge in AI-models in healthcare
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domain due to increase in data and the difficulty in its manual processing. With the 
increase in size of training data, it became essential to identify the data source for 
reliability [25]. Data collection and gathering steps should be very careful examined 
for having reliable information only. Model trained on unreliable training data are 
more to produce incorrect and biased outcomes.

• Limitations during in-processing stage 

Imbalance, incorrect and missing data is processed by the model introduces selection 
bias and data bias in the model. The model design and architecture when processing 
this data exacerbates algorithmic bias. However, it is not easy to identity and eliminate 
algorithm bias during in-processing of information [26]. The model structure is black 
box in nature and hence, make it tedious to identify the potential source of algorithmic 
bias in the AI-based predictive model.

• Enhanced cloud storage, power and speed to reduce clinical errors 

Cloud storage facilitates large datasets with minimal processing. It has been observed 
that large and diverse data can significantly reduce the impact of AI-bias in the 
medical systems and reduce fatal errors in the outcomes. Enhanced cloud storage 
has promoted personalized medical aid which help doctors to understand patient’s 
medical history in a better way [26]. In addition, cloud storage has automated the 
treatment through which patient’s vital such as blood pressure, SPO2, pulse and 
sugar level can be monitored continuously and effectively. But these AI-devices are 
determined to be suffered from implicit bias which results in healthcare inequalities 
[8]. Racial and ethnicity inequalities are predicted by DL-model in patient’s ECG 
data [27]. The technological advancement and progress in medical system emphasize 
to analyze RoB.

• Automated predictive decision-making 

DL and ML based models in medical systems provide fast and accurate prediction 
for various critical health disorders such as breast cancer [28], cervical cancer [29], 
CVD [30] and many other diseases [31, 32]. These models are automatic and accurate 
to provide severity of the disease by analyzing various clinical imaging data such as 
X-ray, MRI (Magnetic Resonance Imaging) and CT (Computed Tomography) scans. 
However, the sociodemographic information of the patient such as gender, race, age, 
and other vitals are not exploited while training the models. Due to which these 
models are identified to be suffered from AI-bias [9, 33]. In addition, the models are 
not efficient enough to address the false positive and true negative results effectively.

• Developers limited knowledge and expertise 

It has been observed that AI-models which are weak in design and architecture are 
more prone to AI-bias. To address these limitations, the developer domain knowl-
edge and expertise are vital in ensuring the experiment and information reliability 
of the system [20]. Perceived bias in the system due to pre-existing beliefs leads to 
inaccurate results. Deep implicit knowledge of the system design, processing and
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synthesis is important for an unbiased system which highly depends on the under-
standing and potential of the developer [34]. Developers should be trained with the 
healthcare explicit and implicit requirements and outcomes to design robust system. 
Efficiency in processing unbiased knowledge and eliminating unnecessary details 
are the prime factors which should be analyzed to reduce the RoB in the AI-models.

• Bias in model selection and feature training 

Models trained on biased feature are more intended to produce biased results. Bias 
perceived in model design is amplified at various stages and can produce catastrophic 
outcomes [25]. It has been emphasized that the choice of model should not have 
implicit bias in its architecture which produces false predictions. Before the practical 
implications of these models, it is essential to evaluate these systems for RoB. These 
models can be used as a recommender system which additionally supports the medical 
practitioners in their decision making. 

To summarize, there are certain limitations, presumptions and weaknesses in the 
system design and information gathering that leads to produce biased outcomes. AI-
model must be examined during its various stages viz. preprocessing, in-processing 
and post-processing to eliminate the RoB. There are many other parameters such 
as societal impact, developer expertise, legal laws and many other unseen reasons 
that misrepresent the model results and produce incorrect diagnosis. As AI is pene-
trating deep into the medical systems, it is significant to analyze the models for RoB. 
Concrete steps, measures and recommendations must be followed to ensure trust, 
accuracy, and fairness of AI-based healthcare models. It is highlighted that dispar-
ities in healthcare can only be minimized by generating unbiased, generalizable, 
interoperable, and explainable AI-models. 

14.3 Types of AI-Bias in Modern Healthcare Systems 

Broadly, bias in AI-models is categorized into three categories namely, data bias, 
algorithmic bias and human bias [34]. These biases are most likely to occur in the 
AI-models at its various stages of design, development, processing, and deployment. 
Outcome of predictive model is considered to be bias if it produces variables results 
for different people depending on their gender, race, age, ethnicity and other socioe-
conomic parameters. In this section, we have discussed the reasons of these biases 
in AI-based predictive models in medical systems. Table 14.1 tabulates the details 
of various representative work in medical domain analyzing the RoB along with the 
utilized risk assessment strategies. Figure 14.1 illustrates the various types of AI-bias 
in medical systems.
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Table 14.1 AI-based representative work in medical domain and their bias assessment strategies 

Reference Type of bias Medical 
domain 

Bias 
assessment 

Summary 

Brault and 
Saxena [35] 

Data bias and 
algorithmic 
bias 

Mobile health Questionnaire 
based 
assessment 

• Bias can be introduced in 
AI-model during various 
stages 

• Stages viz. problem 
definition, feature 
selection, model selection, 
and training 

Suri et al. [36] Algorithmic 
bias 

CVD risk 
prediction 

Mean score 
based 
cumulative 
plots 

• Identified critical 
AI-attributes 

• Utilized grading and 
ranking strategy to 
visualize bias in the 
predictive models 

Celi et al. [26] Data bias Clinical 
medicine 

Confusion 
matrix and 
ROC 

• Evaluated AI-bias in 
country specific datasets 
using gender, racial, 
countries, and author’s 
expertise 

• Utilized dataset from 
various countries to access 
the bias 

Gurupur and 
Wan [25] 

Inherent bias 
due to 
knowledge 

Healthcare – • Emphasized the reasons 
for bias in AI-systems 
highly depends on limited 
subject knowledge, and 
lack in proper expertise 

• Data bias due to missing 
details in the training 
datasets 

Gichoya et al. 
[37] 

Data bias and 
algorithmic 
bias 

Radiology – • Exclaimed the pitfalls 
during various stages of 
data collection, and 
curation 

• Inefficient model design, 
development and 
deployment introduce 
potential bias in the system 

Norori et al. 
[34] 

Data bias and 
algorithmic 
bias 

Medicine F1-score • The potential reasons for 
AI-bias includes, 
information gaps, lack of 
common data standards, 
performance evaluation 
and interoperability 

• Model testing to evaluate 
algorithms for efficiency, 
performance, and fairness

(continued)



14.3 Types of AI-Bias in Modern Healthcare Systems 333

Table 14.1 (continued)

Reference Type of bias Medical
domain

Bias
assessment

Summary

Nazer et al. 
[38] 

Data bias and 
algorithmic 
bias 

Healthcare – • Discussed sources of 
potential bias at various 
stages of model 
development 

• Highlighted the strategies 
to mitigate data bias and 
algorithmic bias 

Noseworthy 
et al. [27] 

Racial bias ECG analysis AUC • Evaluated ECG results and 
inferred those results 
suffered from racial bias 

• Highlighted poor 
generalizability of the 
DL-models for detecting 
low LVEF 

DeCamp and 
Lindvall [24] 

Latent bias, 
emergent bias 

Medicine – • Highlighted the role of 
adaptive learning in 
introducing bias in the 
model 

• Clinical implementation 
and evaluating outcomes 
exacerbate bias in 
AI-model 

Ueda et al. 
[39] 

Data bias and 
algorithmic 
bias 

Healthcare – • Discussed the source of 
bias in healthcare namely, 
data, algorithm, clinical 
and patient interactions 

• Recommended various 
strategies to mitigate bias 
in healthcare 

Sousa et al. 
[40] 

Classifier bias CT-Scan ACC, AUC 
and F1-score 

• Examined the bias 
introduce by artifacts and 
spurious elements in the 
image dataset 

• Applied various 
explainable AI technique 
to mitigate bias from the 
AI-Model 

Kumar et al. 
[9] 

Data bias, and 
algorithmic 
bias 

Medical 
systems 

RBA, RBM, 
RBS and ANA 

• Performed bias assessment 
by categorizing the work 
into three classes 

• Analyzed bias from 
multiple perspectives and 
visualized correlation 
between them using VD

(continued)



334 14 Analysis of AI-Bias in Modern Healthcare Systems

Table 14.1 (continued)

Reference Type of bias Medical
domain

Bias
assessment

Summary

Kumari et al. 
[30] 

Data bias, and 
algorithmic 
bias 

CVD risk 
prediction 

RBA, RBM, 
and RBS 

• Categorized the studies 
into two categories namely, 
UNet based model and 
non-UNet based models 

• Critically analyzed bias in 
AI-models considering the 
characteristics for clinical 
and scientific applications 

Das et al. [31] Algorithmic 
bias, training 
bias 

Brain tumor 
segmentation 

RBS, ACC, 
SEN, ROC, 
and DCE 

• Analyzed segmentation 
bias in ML-based brain 
tumor techniques 

• Ranked RoB in studies into 
three categories low, 
medium and high 

Suri et al. [32] Data bias, and 
algorithmic 
bias 

CVD risk 
prediction 

Analytical 
ranking slope 
method, and 
cumulative 
plots 

• Categorized studies into 
two categories namely ML 
and non-ML to predict the 
RoB 

•  Used  risk  granularity  along  
with five-point 
recommendation to reduce 
the impact of RoB in 
various prediction models

Suri et al. [33] Data bias, and 
algorithmic 
bias 

Covid-19 
infected lungs 

RBA, RBM, 
RBS, 
PROBAST and 
ROBINS-I 

• Quantified RoB in hybrid 
DL-models for predicting 
the Covid-19 infection in 
lungs using randomized 
and non-randomized 
techniques 

• Recommended 8-points to 
minimize the impact of 
RoB in DL-models 

AUC: Area under the curve, ECG: Echocardiogram, LVEF: Left ventricular ejection fraction, ACC: 
Accuracy, RBA: Radial bias area, RBM: Radial bias mean, RBS: Radial bias score, ANA: Analytical 
analysis, VD: Venn diagram, CVD: Cardiovascular disorder, IVUS: Intervascular ultrasound, DL: 
Deep learning, ML: Machine learning, RoB: Risk of bias, SEN: Sensitivity, ROC: Receiver operating 
characteristics, DCE: Dice coefficient

14.3.1 Data Bias 

The potential source of data bias in AI-based medical systems are (i) incomplete 
data collection, (ii) data gathering from unreliable resources (iii) missing and unseen 
information in dataset (iv) fallacious data processing and (v) inaccurate data analysis. 
Also, the predictive healthcare algorithms are suffered from historical biases in the 
dataset [19]. For instance, an algorithm, when trained on false or incorrect past
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Fig. 14.1 Types of bias in 
medical systems

information of the patients, is intended to generate incorrect outcomes in future. 
The missing sociodemographic information such as gender, age, and ethnicity due 
to societal barrier originates imbalance in the datasets which leads to data bias in 
the model. In [41], authors have explored that sex-related information in training 
dataset is essential to generate unbiased outcomes. However, results have inferred 
that the proposed model is unbiased and has no gender specific results. Model is able 
to predict covid-19 in chest X-ray neutral to sex attribute. 

Oftentimes, training data suffers from historical biases that can be amplified once 
it is processed through the model [42, 43]. Historical biases lead to racial disparities, 
health inequities and false outcomes. The reasons for historical bias in the health data 
are structural barriers such as cultural restrictions or individual limitations. These 
restrictions influence data collection and can produce under diagnosis outcomes. 
Historical biases can also arise due misclassification, mislabeling, and missing certain 
aspects of different segments of population [7]. In addition, underrepresentation of 
certain group, caste or creed in the training data also lead to potential bias in the 
outcomes [44]. It has been observed that medical diagnosis is biased toward a specific 
gender or race as there is a shortage of female gender or darker/African race people 
in the datasets. 

Less diversified training data is relatively more prone to introduce biasness in the 
model [39]. This kind of training data discriminates between the medical outcomes 
based on sexual orientation, nationality, and/or socio-economic status and introduces 
bias in the metadata. This bias is tough to identify and quantify. Sampling bias can be 
engaged in the model by inappropriate sampling of datasets into training set and test 
set. This bias is introduced in the model during the initial step of data preparation. 

Another potential source of bias in the datasets is classification/ measurement bias 
[38]. Sometimes, model trained on imbalance datasets are expected to suffer from 
this type of bias. This bias inaccurately classifies patients based on their demographic 
features and/or ethnicity and provides different care and incorrect diagnosis. Certain 
commonly used medical devices such as oximeter, pulse monitor, and thermometer



336 14 Analysis of AI-Bias in Modern Healthcare Systems

are analyzed to be suffered from bias [45]. Oximeters are recorded to overestimate 
the oxygen level in the darker skin of people. The reason may be the imbalance 
training dataset which contains few data from the darker skin people. 

To summarize, data bias is induced in the model during the initial steps of data 
preparation that includes gathering, selection, classification, and sampling. Data bias 
in the training datasets leads to imbalance, discrimination and inaccurate outcomes. 
The reason could be the missing information in the training data that includes socio-
demographics and socio-economic status of the person. The societal barriers and 
other unforeseen reasons restrict gathering the complete details of the patients. Data 
collection and their utilization for research are country specific and hence, prevent 
the global policies for the development of robust datasets in the medical systems. 

14.3.2 Human Bias 

Developer expertise, knowledge and perception introduces human bias in the AI-
models. Human bias is one of the typical biases which is hard to detect and mitigate 
[34]. Societal prejudices lead to human bias in the data and model design which is 
exaggerated during in-processing stage of AI-model. Incomplete population data, and 
lack of model understanding propagate human bias in healthcare predictive model 
which impact the quality of model-decision making. 

Human design algorithms and their understanding and perception about model 
features, processing, and evaluation metrics are crucial in preventing human bias. 
Limitations in variability and diversity of expert knowledge introduces perception 
bias in the AI-models [37]. There are cases where the designer selects sensitive 
features and design models using those features. When this model generates poor 
quality and false outcomes, it is analyzed that selected features are not only inefficient 
but also inappropriate to generate expected results. The perception bias is introduced 
in the model due to insufficient human knowledge and expertise. In addition, humans 
prioritize the problem with their own perception rather than focusing of necessities 
and urgency of diagnosis to start the accurate treatment. 

Data collection, preparation and processing are also done by human experts. This 
will act as an input data for training the AI-model to predict accurate results. Training 
data is selected by developers to generate robust outcomes. Data selection is a very 
critical step for obtaining correct results from the AI-model. Sometimes, developer 
is not able to select the correct, diverse, and complete datasets and that introduces 
selection bias in the decision-making [7]. Also, the choice of appropriate AI-model 
for designing accurate and unbiased model is highly dependent on the experience 
and knowledge of the AI designer. Fairness in algorithmic design and completeness 
in training data are essential to prevent the selection bias in clinical predictive algo-
rithms. In addition, the expertise and experience of the developer is significant to 
minimize the impact the selection bias in the model by neglecting and adjusting the 
corresponding data that may induce bias.
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Limitation of human mind to think critically for generating reliable models intro-
duces cognitive bias in the system [19]. Human reasoning, human-AI interaction, 
and human past decisions are essential to augment correctness in clinical outcomes 
from AI-based decision-making systems. Human ability, over-reliance, response, 
behavior, and human collaborative efforts introduce trust in AI-models by perpet-
uating human bias in decision-making. Human behavior can recommend strategies 
to reduce the impact of bias explicitly. Human reliance on AI-models in healthcare 
system inherits racial and gender bias in the outcome [25]. 

14.3.3 Algorithmic Bias 

The combination of human bias and incomplete data introduces algorithmic bias 
in the healthcare predictive model. When the model is trained on biased data that 
will lead to algorithmic bias in the model. Weak design and architecture of the 
AI-model exaggerate this bias which produces false, different, and inaccurate diag-
nosis for different group of people. Algorithmic bias introduces systematic errors in 
the model and hence, impacts the reliability, trust, and fairness in the model. The 
black-box design of the AI-model prevents the interpretability and generalizability 
of the results and causes algorithmic bias. The information about the number of 
hidden layers, optimization function, loss function, weight adjustment and classifier 
specification are not specified explicitly in all the research papers. Classifier bias 
can produce different predictive results and biased outcomes for different datasets 
[40]. The missing information about the model’s hyperparameters prevents the repro-
ducibility of the results and prevents to evaluate the interoperability of the model to 
reduce the impact of algorithmic bias. 

Also, feature engineering plays a vital role for inducing algorithmic bias in the 
model. Identification of feature importance, sensitive feature and feature selection 
is critical for robust design of the predictive model. DL methodology is used for 
robust feature extraction from the medical imaging such as X-ray, CT, and MRI 
images. These extracted features contain quality information suitable for unbiased 
algorithmic design with accurate outcomes. One of the another potential reason of 
algorithm bias in AI-based predictive model is lack in description about its contextual 
specifications [46]. Medical systems are designed with general specifications which 
vary in design and architecture accommodating the diversity in accordance with the 
input sociodemographic, lifestyle and medical history. 

Robust architecture of AI-based predictive models is crucial for accurate medical 
prediction. Authors have emphasized that casual reasoning is important for algo-
rithmic fairness [47]. Casual reasoning defines the technology to recognize ethical 
and social biases. Selection bias can introduce unfairness and biasness in the algo-
rithms if casual knowledge is not formally used for bias inferences and understanding. 
In [7], authors have defined three potential sources of algorithmic bias namely, direct 
(model design), training data variance and noise. In addition, incorrect algorithm
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performance comparison, validation and monitoring phases also introduce bias in 
implementation, clinical workflows, and other resource usage. 

To summarize, the potential reasons of algorithmic bias in AI-models are its weak 
design, black box architecture, unreliable conceptualization, inefficient implementa-
tion, and deployment strategies. Algorithmic bias in healthcare predictive algorithms 
leads to incorrect diagnosis which can generate highly risky outcomes. Fairness and 
trustworthiness are important pillars in algorithmic design to ensure transparency, 
and accountability of AI-based algorithms. 

14.4 Bias Assessment Tools 

AI-based clinical models have raised concerns for accuracy and reliability in their 
outcomes as it is identified that these models are suffered from AI-bias [9]. To 
ensure fairness and trust in these models, it is essential to evaluate these models 
qualitatively. To measure bias accountability in AI-models, bias and fairness toolkits 
such as Aequitas [48], ROBINS-I (Risk Of Bias In Non-randomized Studies of 
Interventions) [49], PROBAST (Prediction model Risk Of Bias Assessment Tool) 
[50], CHARMS (Checklist for critical Appraisal and data extraction for systematic 
Reviews of prediction Modeling Studies) [51] and BIAS (Biomedical Image Analysis 
challengeS) [52] are recommended by various researchers. The details of each of 
these bias assessment toolkits is as follows. 

14.4.1 Aequitas: Bias and Fairness Audit Toolkit 

Aequitas is an open-source audit toolkit used to evaluate bias and fairness in an AI-
model [48]. This systematic toolkit is easy to use and can test ML workflows, bias 
and fairness metrics in various subgroups of considered population. It also supports 
decision making for scientist, developers, and policy makers by testing the developing 
and deploying stages of AI-models. 

Aequitas defines a step of procedure to audit the AI-system for its biased outcomes 
for a specific demographic/social group. This toolkit performs bias assessment prior 
to model selection and evaluate disparities in results neural to the type of training 
data. The bias and fairness audit are executed by checking the operational flow of the 
AI-model before proceeding to production deployments. Primarily, the audit toolkit 
has two main users namely, developers who is designing AI systems (scientists and 
researchers) and policymakers who defines policies for AI-system acceptance. 

In healthcare systems, authors have audited the ML-framework which are used 
for prediction and diagnosis of critical diseases such as diabetic retinopathy, and 
Alzheimer diseases using Aequitas toolkit [10]. The quantitative bias analysis is 
performed on test sets and results are compared with the reference set to predict fair-
ness. The toolkit results represent fairness and unfairness by computing the disparity
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between the test and reference set. Disparity value between 0.8 and 1.25 denotes 
high similarity results with better quality and fairer AI-model. 

To summarize, there are various reasons for bias in AI-models in healthcare 
domain. AI-models could not provide similar results to all the patients by performing 
early prediction of critical diseases due to bias intervention in the model. Hence, it is 
necessary to audit those models for their fairness in outcomes by using toolkits such 
as Aequitas. This toolkit analyzes models during its development stage and provides 
results to prevent the failure of models after deployment. This toolkit is useful for 
both developers and policy makers. The results of the audited model are effective to 
ensure fairness and equity in the ML-model for solving the desired problem from 
paper to practice. 

14.4.2 ROBINS-I (Risk of Bias in Non-randomized Studies 
of Interventions) 

In order to describe the strength and limitations of non-randomized studies such as 
healthcare, a bias assessment tool ROBINS-I is proposed by [49]. To analyze the 
RoB, seven different domains are identified through which bias can be introduced 
in the AI-models. Broadly, the domains are categorized into pre-intervention, at-
intervention and post-intervention levels. Pre-invention examines the confounding 
bias and the selection bias due to participants in the study. At-intervention domain 
assesses bias due to non-differential classification. Post-intervention assesses RoB 
at four different domains namely, bias due to deviation, bias due to missing data, 
measurement bias and bias in the selected results. 

It is essential to determine the potential and magnitude of RoB so that strategies 
can be planned for its mitigation. To predict overall RoB in ROBINS-I, each study is 
categorized into five judgment levels namely, low-bias, moderate-bias, serious-bias, 
critical-bias and no information within each domain as well as across the domains. 
If a study performs well within and across all the domains, then it is considered to 
in low RoB and have high quality to be ready for deployment. Moderate-bias zone 
studies perform well on training data, but their quality and fairness cannot be ensured. 
For a study in a serious and critical zone, the outcomes must be evaluated to ensure 
trustworthiness and fairness. Studies can only be kept in no information zone if the 
number of available parameters is not sufficient for a judgment. 

In healthcare, ROBINS-I is exploited for qualitative risk assessment in various AI-
based prediction techniques [33, 53]. In [33], authors have analyzed RoB in hybrid 
DL studies utilized for predicting COVID-19 CT scan data of infected lungs. The 
three domains of ROBINS-I define seven features as confounding parameters, partic-
ipant selection, intervention classification, intended deviation, missing data, outcome 
measurement and reported results. After this, the studies are categorized into three 
bias zones as low, moderate, and high. Similarly, authors have exploited ROBINS-I 
tool for risk assessment in AI-model utilized for acute respiratory distress syndrome
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[53]. Seven features in three intervention factors are examined for categorizing bias 
in three zones namely, low, moderate, and high. 

14.4.3 PROBAST (Prediction Model Risk of Bias Assessment 
Tool) 

To determine the applicability of medical diagnosis and prognosis studies, RoB is 
examined using PROBAST tool [50]. PROBAST tool is utilized for investigating 
the limitations in design, conduct and evaluation that may lead to bias under certain 
circumstances or RoB in future when certain event will get triggered. Basically, this 
tool has four domains namely, participants, predictors, outcome, and analysis. Partic-
ipant domain covers the concerns related to data-driven sources of bias. Predictor 
domain covers the concerns related to the design, definition, and measurement of 
the AI-model. Outcome domain covers the concerns about the results produced and 
measured by the model. Lastly, analysis domain covers the RoB related with the 
statistical measurement and considerations by the model. 

AI-based predictive models are designed to validate and provide prediction scores 
based on their analysis. In healthcare, these predictions are utilized for diagnosis of 
critical diseases such as cancer, cardiovascular disorder, COVID-19 and many more 
[33, 53]. Before the practical applicability of these prediction models, it is essential 
to evaluate the RoB to prevent their failure in real-time. In order to evaluate the 
quality and applicability of AI-based models, PROBAST tool had defined certain 
guidelines to assess RoB. For this, this tool has presented four development stages 
namely, scope and definitions, review of evidence, web-based Delphi procedure and 
piloting and redefining the tool. 

PROBAST tool is exploited by researchers to estimate the RoB in various AI-based 
predictive studies in medical systems [33, 53]. Authors have utilized PROBAST risk 
assessment tool to evaluate hybrid DL studies proposed to predict COVID-19 in 
infected lung data [33]. The four domains are represented to evaluate the presence 
and absence of crucial features in AI-models. Participant domain comprises of radi-
ologist validation, data source type and demographics data. Imaging features, pre-
processing, data augmentation and optimizers are included in the predictor domain. 
Outcome domain contains performance evaluation parameters and details about RT-
PCR (Reverse transcription-polymerase chain reaction) test. Lastly, the analysis 
domain includes data partitioning, clinical validation, benchmarking procedures, 
patient count and statistical evaluation. After this, studies are ranked and catego-
rized into three bias zones namely, low, moderate, and high. Similarly, authors have 
analyzed RoB in AI-studies used for predicting acute respiratory distress syndrome 
using PROBAST risk assessment tool in three bias zones [53]. The four domains 
contain attributes such as participants (data source and radiologist verification), 
predictors (demographics and imaging features), outcomes (multiple datasets and
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RT-PCR test details) and analysis (patient size, optimizer, validation, and design 
innovation). 

14.4.4 CHARMS (CHecklist for Critical Appraisal and Data 
Extraction for Systematic Reviews of Prediction 
Modeling Studies) 

Mostly, AI-based prediction models are utilized for diagnosis and prognosis of a 
specific disease. The design and strategies used in development of these models play 
a vital role in determining the quality and applicability of these models in real-time. 
To validate these prediction models a checklist known as CHARMS is designed 
containing questionnaires to review these models [51]. 

CHARMS assessment tool has defined the key items to review the usefulness and 
potential application of work. The key items include current and future events of 
the models, intended scope, prediction modeling type (with or without external vali-
dation), target population, prediction outcome, prediction duration and the intended 
moment of using the model. Further, eleven key domains are specified to review the 
RoB and applicability of AI-based prediction models. The relevant items which 
are reviewed are data source, participants, predicted outcome, candidate predic-
tors, sample size, missing data, model development, model performance, model 
evaluation, results, interpretation, and discussion. 

In [54], authors have utilized CHARMS checklist to review the COVID-19 dataset 
for RoB. The key parameters namely, data source, participant description, outcomes, 
sample size, missing data and predictors are used for risk assessment. Participants’ 
description includes the methodology for their selection, inclusion, and exclusion 
from the analysis. Outcome checks the purpose of intention by the model. Overes-
timation and underestimation by the model for a certain prediction is reviewed in 
outcomes. Missing data ensures sufficiently large datasets are used for avoiding over-
fitting and confounding the model. Predictors analyze the source of data acquisition 
devices and protocol. Finally, the sample size is associated with several aspects of 
the models such as predictor’s size, model preprocessing and importance of effect to 
be predicted. 

Apart from these tools, BIAS (Biomedical Image Analysis challengeS) check-
list is also defined to improve the transparency and applicability of the biomedical 
images for its application and imaging modality [52]. In [54], authors have reviewed 
biomedical dataset by preparing a checklist of questionnaire. This checklist has key 
questions about the dataset source, purpose, distribution and intended applications. 
These reporting guidelines are highly effective for performing the in-depth analysis 
of the model. 

To summarize, the focus of risk assessment tools is to standardize and facili-
tate the model functionality, and applicability. These tools estimate the RoB at the 
development stage of the AI-model to prevent failure and unseen outcomes during
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clinical deployments. These tools evaluate the potential of model design, develop-
ment, interpretability, generalizability, and interoperability. The AI-based models 
provide good accuracy and results on training datasets. These tools provide check-
lists which ensure that these models are suitable for real-time deployment and provide 
the correct diagnosis and prognosis of the intended disease. 

14.5 Approaches to Mitigate AI-Bias in Modern Healthcare 
System 

AI-based models in medical systems must be unbiased, transparent, open, and fair in 
decision-making for fast and accurate outcomes. It has been observed that a biased AI-
model generates discriminatory outcomes for a marginalized subgroup of population 
and has a striking implication in healthcare. Hence, it is essential to analyze the 
potential source of bias in AI-based medical system and design strategies to mitigate 
it. The following are the key steps which help in addressing the bias in the medical 
system to a great extent. Figure 14.2 illustrates the development stages of AI-model 
and bias mitigation strategies for a robust and trustworthy prediction model. 

• Data collection and preparation: The strategies and methodology during the initial 
step of data gathering and preparation are very crucial to eliminate the impact of 
data bias in AI-model. For this, protected attributes such as gender, ethnicity, age, 
smoking history, kinship and insurance status must be collected and considered 
while preparing the training dataset [9].

• Large and diverse training dataset: The size of the training dataset must be large 
enough for effective training/validation/testing. In addition, datasets can contain 
details from various subgroups of a population to ensure diversity. Selection of 
large and diverse size training dataset is essential to avoid selection and sampling 
bias due to missing/unseen data [38]. Model trained on multiple datasets are

Fig. 14.2 Development stage of AI-model and bias mitigation strategies
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effective to address the imbalance and discrimination that may exist in single 
datasets.

• Public datasets: To avoid the impact of societal bias in the model outcomes, it is 
suggested to train models on public datasets. The public datasets provide clear 
settings and details which are open and trustworthy. Model trained on public 
datasets can avoid historical bias that may be present in a self-generated data due 
to the embedded biasness in its collection [9].

• Data augmentation for smaller datasets: Sometimes when the dataset is small 
in size, data augmentation techniques such as flipping, rotation, and shifting are 
applied to generate synthetic and surrogate data. Surrogate data not only increase 
the dataset size but also efficient in handling dataset imbalance [46]. However, it 
has been observed that surrogate data is insufficient and biased toward a specific 
subgroup of population due to less diversity. In addition, if the dataset from which 
the synthetic dataset is generated is suffered from bias, then the bias is propagated 
in the whole system design and can predict false outcomes.

• Algorithm selection: Selection of a robust and reliable algorithms ensured that 
the algorithmic predictions are unbiased and fair [27]. Clear understanding of the 
problem statement determines that the algorithms will solve the desired problem 
accurately by engaging the diverse domain experts and community members. 
Diverse expertise in the development team can minimize the impact of human-bias 
in the model.

• Data preprocessing: Feature engineering for identifying the sensitive and impor-
tant feature can prevent the model accountability for bias. Feature bias can be 
avoided by understanding data and defining input variables effectively during 
pre-processing stage [34]. Dependent and sensitive features should be utilized in 
model architecture and their impact should be reviewed consistently for biased 
and inaccurate outcomes.

• Model development: To ensure fairness in the model design and architecture, 
model methodology and architecture should be transparent, fair, and interpretable. 
Details of loss function, optimizer, activation function, learning rate and other 
hyperparameters must be mentioned explicitly [37]. These settings are helpful in 
verifying the model architecture for its incorrect predictions.

• Model validation: Model must be validated internally and externally to avoid 
implicit and explicit bias in the model. Multiple performance metrics can evaluate 
the model prediction outcomes from different and wider perspective [25]. This 
can eliminate evaluation bias that occurs in the model due to disparities in model 
monitoring and assessment.

• Risk assessment tools: Risk assessment tools such as PROBAST [50], ROBINS-I 
[49] and others [51, 52] are effective in risk assessment during development stage. 
These tools can not only assess the risk involved in realistic deployment of the 
model but also prevent catastrophic results that can occur due to biased and unfair 
outcomes. Tools are impactful for generating trust in the clinical prediction by 
various AI-model in healthcare.
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• Mixed model strategy:  In [20], authors utilized mixed logistic regression models 
to combat the impact of racial bias and religious bias in discriminatory algorithms. 
The experimental results for each of the subgroups in a population was estimated to 
identify the biasness in the model outcome. In addition, extensive model auditing 
was recommended to check the model deployment for fairness and bias in its 
clinical decision making.

• Model understanding to end users: End users should have a clear understanding 
of AI model and potential risks that may cause biased output [39]. Clinical staff 
and the participating patients will be made aware of the limitations, benefits and 
usage of AI in decision making. It has been observed that educated patients who 
understand AI and AI-bias in recommendations by AI-model are more satisfied 
and provide positive feedback to eliminate the biases. This will help in upgrading 
the system with better accuracy and efficiency that will serve the needs of all 
patients.

• Gap between AI and end users: Healthcare disparities are observed in a population 
due to unequal distribution of AI-driven medical systems benefits [39]. Certain 
AI-based algorithms are not available to all the clinical staff and patients. This will 
cause privilege bias that brings mistrust in AI-systems unintentionally. The reason 
for this bias could be lack of knowledge, expertise, resources and perspective of 
a certain group. In order to mitigate this sort of bias in healthcare, it is essential 
to provide proper training and education to the clinical staff so that full potential 
of AI-model can be utilized effectively. 

To summarize, bias can creep into model design, architecture, training data and 
outcome at any stage of its development. From the initial steps of data collection and 
gathering to the final steps of model implementation and validation all are critical 
and prone to biasness. There is no defined procedure of steps and gold standards that 
can mitigate the impact of AI-bias in medical systems. For a model to be unbiased in 
its outcome, it is essential that it should be trained on large, diverse, indiscriminate, 
multiple, public, and balanced datasets. In addition, the model architecture should 
be robust, reliable, and transparent to validate predictions. Models must utilize the 
risk assessment tools before deploying the model from paper to practice. 

14.5.1 Limitations to Prevent AI-Bias in Modern Healthcare 
System 

To address the AI-bias in medical systems, there is a requirement to identify the 
bias accountability in AI-based predictions to prevent the severe errors and harmful 
outcomes [39]. AI-bias in predictive model raises concern for the trust and fairness 
in diagnosis and prognosis in healthcare. It is mandatory to take the necessary steps 
and procedures to mitigate the impact of various types of bias in AI-model. But there 
are certain limitations and legal manifestations that restrict the mitigation of data 
bias and algorithmic bias in AI-model.
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In order to mitigate data bias, there is a requirement of public, complete and 
unbiased data set. However, public availability of medical data involves legal and 
ethical concerns. Data privacy, modifications, alterations, and usage laws are country-
specific and deal strictly with compliance and regulations [55]. Protecting patient’s 
data and ensuring privacy is mandatory for ethical foundation of AI. Patients should 
be made aware and understandable about the potential threats, benefits, and purpose 
of using their medical confidential information in AI for decision making. Further, 
an informed signed consent must be taken from the patients for the usage of their 
confidential information for clinical purposes. 

During data exploration stage, synthetic data is generated to increase the dataset 
size by data augmentation technique. Surrogate data is utilized to address the missing 
data values in the dataset. Shortage of effective medical data impact the accuracy of 
the model and introduce selection bias and data manipulation bias [55]. These biases 
may cause model failure when tested on unseen data. Limitation to data sharing and 
usage rules prevent the generalizability of the model [14]. In addition, the ethical 
concerns respect human rights and privacy for using their secret medical information 
for clinical deployment which hinders the large and diversified datasets in medical 
systems. 

It is important to specify the roles and responsibilities of each stakeholder to 
prevent misdiagnosis and false predictions in healthcare. Doctors, clinical staff, and 
AI-scientists should check and evaluate the AI-generated diagnosis before its appli-
cability. AI-scientist should verify and get the results approved by the specialist 
doctor and integrate the suggestions and recommendations in decision-making [19]. 
However, the gap between the knowledge and expertise of AI-scientist and clinical 
staff may not critically evaluate all the AI-outputs generated by the predictive model. 
In addition, AI-scientist can be held responsible to design accurate, efficient, and fair 
model [27]. But the role of clinical staff is vital in providing the community feedback 
and clear guidance to adjust the limitations of AI-model and enhance overall quality 
of patient’s care. 

Establishing an unbiased and fair AI-model in healthcare requires to follow poli-
cies and procedures defined by various central agencies. The regulatory authorities 
and policy makers should be proactive in designing the strong and robust policies that 
can promote and validate the design, architecture, input and outcome of an AI-model 
[20]. These agencies specify the requirements that all designers and developers must 
disclose about their training data, implementation methodologies, and evaluation 
parameters. In addition, the defined policies should be neutral and focus to elimi-
nate the disparities in healthcare. However, AI-developers and health professionals 
are unaware about the demand and requirements of these policies and regulations. 
On the other hand, recognizing dark areas that may cause AI-bias in the model is a 
challenge for both policy makers and regulatory authorities [39]. The comprehensive 
guidelines should involve all the stakeholders along with policy makers to govern 
standards and regulations for a fair and trustworthy AI-model in healthcare. 

Strong and robust architecture of AI-model can mitigate the impact of algorithmic 
bias in predictive model to a great extent [8]. But the black box nature of DL model 
and non-disclosure of model salient details such as number of input layers, hidden
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layers, loss function, epochs, and optimizers by many researchers restricts to check 
the full potential and capabilities of AI-model. These models should monitor the 
clinical workflow to ensure that the model should not degrade and become biased over 
time. In addition, automated AI model in healthcare are impacted by bias which is 
tedious to identify and generate conflict decisions in the predictions [55]. The reason 
could be human reliability more on the automated predictive model and ignoring the 
conflicting human decisions. 

Regular auditing and monitoring of AI-model is the best practice that should be 
followed to validate the quality of predictive model for fairness, accuracy and effec-
tiveness [39]. Auditing teams must be established, including all the stakeholders, to 
verify the performance of the system for different populations under multiple condi-
tions. If AI-model is identified to be suffered from bias, then adjustments should be 
made to rectify the biases and upgrade the model to be adaptive with the varying 
conditions [20]. However, quality assessment and constant monitoring of the system 
cannot ensure that the model will maintain high performance after adjusting all the 
emerging biases. In addition, emergent bias in AI-model may not extend similar treat-
ment to the patients without any discrimination. The reason could be lack of expertise 
to identify the key indicators that are accountable for providing underdiagnosis and 
health disparities. 

14.5.2 A Special Note on Explainability, and Generalizability 
in Modern Healthcare 

The key reason for algorithmic bias in AI-model is its black box design architecture. 
It is suggested to design the model explainable and interpretable to minimize the 
impact of bias in AI-based prediction models [40]. Bias accountability can be evalu-
ated in AI-model by enhancing transparency and fairness, providing comprehensive 
explanations to model design, input and predictions. 

Explainability is a strategy to analyze the methods for its outcome. Explainable AI 
models in healthcare are able to define the internal logic of the model which help in 
understanding the methodology the way outcomes are generated [39]. Explainability 
in AI-model can be introduced by tools namely, SHAP, LIME and GRADCAM [56]. 
These tools interpret how AI-model generates an outcome and also validates clinical 
prediction of the model in presence of certain risk factors [40]. In case of false 
prediction, preventive measures can be taken to eliminate the inaccuracy in model 
design and assumption before realistic deployment. 

Generalizability ensured that the AI-model will predict accurately when tested on 
a dataset different from the training dataset. The model architecture is generalizable in 
terms of its prediction is to be free from any racial and gender bias. Generalizability 
can be assumed in training dataset if it does not have historical and societal bias 
during its gathering and processing phases [9]. Due to limited data availability in 
healthcare, generalizability of AI-model is a challenging task. Addressing all the
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concerns related to data gathering, patient’s privacy and clinical data usage, help 
in developing generalizable dataset [27]. Model trained on generalizable datasets 
expected to be fair and unbiased. The outcome of these models is more realistic 
when deployed in real-time. 

14.6 Summary 

AI-based predictive models have shown superior accuracy and effective results in 
predicting the critical diseases such as cancer, brain tumor, CVD and many more. 
However, these models are suffered from AI-bias and predict discrimatory outcomes 
based on patient’s socio demographics such as sex, age, ethnicity, race, and insurance 
status. There are three potential sources of bias in medical system design namely, 
training data, human perception and algorithmic architecture. Data bias in training 
dataset may creep during its initial steps of collection, and gathering. The unbalanced 
and incomplete datasets lead to misclassification errors in the outcomes. Model 
trained on such datasets are realized to be suffered from selection bias, and latent 
bias when tested on unseen data. Human perception leads to human bias which highly 
dependent on the knowledge and experience of the developer. Human bias can be 
embedded in the medical system due to incorrect choice of dataset and improper 
selection of predictive model. Weak design of the AI-model leads to algorithmic 
bias. The black box nature of AI-model and insufficient information about the model 
salient parameters such as loss function, number of optimizer, input and hidden layer 
variables contribute much toward the algorithmic bias. 

Various bias and fairness evaluation toolkits such as Aequitas, PROBAST, 
ROBINS and many other focus to assess the potential risks in healthcare model 
during its development stage. These tools identify RoB in the considered AI-model 
so that the predicted risk can be corrected to prevent the harmful results during 
deployment stage. The model is audited and evaluated on certain parameters to vali-
date the outcome to be free from bias. These toolkit ensure the trust and fairness in 
the AI-model predictions. 

It is essential to adopt the procedure and strategies to mitigate bias in AI-model in 
healthcare design. It is advisable to utilize public, large and diverse datasets to avoid 
data bias. In addition, validation of model on multiple datasets ensures the model’ 
generalizabiltiy and interoperability. Strong and robust design of AI-model archi-
tecture is essential to mitigate algorithmic bias. Selection of sensitive and important 
featuring during in-processing of model development stage is critical to avoid selec-
tion bias. In addition, explainable and interpretable AI-model are more reliable in 
their outcome to be deployed in real-time.
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Chapter 15 
Examining QoS for Modern Healthcare 
Systems 

Abstract Smart healthcare is revolutionizing healthcare delivery by integrating the 
advantages of IoT, mobile technology, and cloud computing. Cloud computing has 
greatly facilitated the integration of healthcare institutions, caregivers, and patients 
in the health business to exchange information. Low latency and quicker reaction 
times are the primary factors driving efficient healthcare systems’ implementation. 
Therefore, prompt communication across healthcare institutions is crucial in general, 
but considerable delays among many stakeholders might lead to catastrophic conse-
quences during an emergency. Therefore, innovative methods such as edge computing 
and artificial intelligence (AI) can effectively address these issues. For a packet to 
be transmitted from one point to another, it is necessary for the “quality of service” 
(QoS) requirements to be fulfilled. QoS, or Quality of Service, pertains to the level of 
performance and reliability that a service provides to its consumers. QoS metrics like 
as throughput, bandwidth, transmission delay, availability, jitter, latency, and packet 
loss are essential in this context. We prioritize the individual devices that exist at 
various levels of the smart healthcare infrastructure and the quality of service (QoS) 
needs of the healthcare system as a whole. 

Keywords Quality of service (QoS) ·Modern healthcare systems · Smart 
healthcare · Digital health · Healthcare service quality · Health system 
performance · Healthcare communication networks · Health information 
technology (HIT) 

15.1 Introduction 

Health is a very precious possession for all individuals, and healthcare is the service 
that can assist and advise in maintaining this possession. Presently, there is a pressing 
demand for improved and cost-effective healthcare services, driven by the rapid 
expansion of the population and the prevalence of various diseases. The health 
industry has notably benefited from the integration of Internet of Things (IoT), mobile 
technology, and cloud computing, which have facilitated the connection between
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health facilities, caregivers, and patients to exchange information [1]. The imple-
mentation of smart healthcare, which involves the transmission and reception of 
medical information, is very cost-effective for stakeholders. Health devices provide 
substantial volumes of data and need processing by the system’s objectives. The 
proliferation of smart healthcare systems has resulted in a significant increase in the 
number of IoT healthcare devices, which is anticipated to exceed 162 billion world-
wide as of 2020 [2]. Hence, given the substantial amount of data in an energy-limited 
setting, modern communication systems are becoming increasingly inefficient. Simi-
larly, current computing approaches are also falling short in meeting the performance 
needs of smart healthcare applications. Moreover, medical data is subject to time 
constraints, and medical data that is delayed provides minimal assistance to care-
givers, particularly in urgent situations. Efficient healthcare systems may be achieved 
by prioritizing low latency and improving reaction time. Consequently, prompt reac-
tions from healthcare organizations are crucial, yet during crises, delays for different 
parties might result in disastrous situations. 

Low latency and short reaction times are essential in healthcare services for rapid 
data access, facilitating precise diagnosis. The relevance of the following real-world 
circumstances is highlighted:

• If the streaming videos between the doctor and patient function flawlessly, a 
patient residing in a distant place with few medical resources can access the neces-
sary healthcare. The physician will possess the capability to assess the patient’s 
symptoms and establish a precise diagnosis.

• Low latency is beneficial for X-rays, MRIs, and other medical imaging because it 
enables fast loading for doctors and several viewing angles for rapid interpretation 
of the provided results.

• In medical emergencies, prompt access to a patient’s medical data, without any 
obvious delays, might save their life and ensure that they receive appropriate care. 

Cloud computing offers extensive computational and storage capabilities to 
healthcare equipment integrated with IoT technology. However, it suffers from 
significant latency and sluggish reaction times because of its distance from the end 
devices. Therefore, to handle such circumstances, cutting-edge methods such as edge 
computing and artificial intelligence can effectively address these problems [3]. Edge 
computing is the processing of data in devices positioned at the network’s edge [4]. 
This approach reduces latency and improves energy efficiency. Edge-assisted IoT 
solutions facilitate the timely delivery of medical services. Furthermore, the integra-
tion of these two technologies has the potential to offer answers to several complex 
issues in healthcare systems. Utilizing AI approaches can significantly enhance the 
analysis of medical data and decrease reliance on human involvement for decision-
making. Artificial intelligence can forecast diseases by analyzing medical records and 
can provide patients with recommendations for preventing or treating the anticipated 
illnesses. In order to accommodate the computational demands of AI approaches, it 
is necessary to develop less resource-intensive AI techniques for edge computing [5]. 
Edge computing extensively use AI techniques, including machine learning (ML)
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and deep learning (DL), for system training and knowledge acquisition. Edge intel-
ligence, which is the integration of artificial intelligence (AI) with edge computing, 
is revolutionizing the functionality of smart healthcare apps. 

Edge intelligence is the fragmentation of AI services and IoT data, which are then 
distributed among many edge devices. Hence, edge devices may possess comprehen-
sive or partial artificial intelligence services or Internet of Things data. Therefore, 
the services are relocated from the cloud servers to the edge-assisted IoT devices, 
allowing for AI and data storage to be closer to the end-users [6]. Simultaneously, 
the healthcare system based on the Internet of Things (IoT) comprises a multitude 
of devices with distinct specifications. The Internet of Things (IoT) devices present 
several issues, such as increased demands for battery longevity, interference from 
other devices, signal weakening in different environments, and reduced dependability 
caused by increased latency. 

High-quality healthcare services are often characterized by precise diagnosis, 
timely treatment, and exceptional patient care. From a technical standpoint, the effi-
cient functioning of medical monitors and equipment guarantees that the patient’s 
information will be swiftly and seamlessly transmitted to the doctor’s computer. This 
will ensure that the patient receives timely and suitable medical care. This improves 
the quality of healthcare services by enhancing reaction time and reducing waiting 
periods for patients and physicians at advanced medical facilities, both on-site and 
remotely. The wireless link’s service characteristics are of highest importance as 
they directly contribute to enhanced signal receptions, reduced packet loss ratios, 
and minimized power consumption. Furthermore, the utilization of distributed AI 
services and IoT data gives rise to many quality of service (QoS) difficulties, such as 
battery longevity, delay variability, and so on (Role and advantages of AI in modern 
healthcare system is shown in Fig. 15.1). 

The key contributions of this chapter are as:

• This chapter explores the issues and challenges concerning the quality aspect of 
smart healthcare, particularly the telecare service.

Fig. 15.1 Role and advantages of AI in modern healthcare system 
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• Given the advancement of technology, improved healthcare could be delivered 
in a much personalized manner based on individuals’ profiles and the associated 
environmental contexts.

• There are emerging healthcare systems built on the convergence of computing, 
communications, and other smart technologies. However, no matter how good 
a healthcare system is in terms of sophistication and cleverness, the quality of 
service it provides must be close to the services offered in a traditional hospital 
setting.

• What are the key services or events that should be offered in such a smart hospital 
setting? How would the quality of services differ when the service delivery/ 
performance depends on not only health professionals (i.e. doctors, nurses in 
a conventional hospital) but also on the general patients/their carers? 

The rest of the chapter is organized as follows. Section 15.2 elaborates on the AI-
based research for QoS in modern Healthcare. In addition, Smart medical services for 
quality evaluation system are discussed in Sect. 15.3. Technological challenges that 
emerging the obstacles in the digital era for modern Healthcare system are discussed 
in Sect. 15.4. Future trends and Innovation of the work is mentioned in Sect. 15.5. 
The Summary of the chapter is mentioned in Sect. 15.6. 

15.2 Related Work 

This part focuses on the examination and evaluation of past strategies for ensuring 
quality of service (QoS), quality of experience (QoE), and cost-effective scheduling. 
Additionally, it explores metaheuristic algorithms that are relevant to the healthcare 
field based on existing research. 

15.2.1 Optimizing Quality-of-Service (QoS) and Achieving 
Cost-Efficiency Through Scheduling 

In recent years, there has been significant attention given to QoS (Quality of Service), 
QoE (Quality of Experience), the Internet of Medical Things (IoMT), and the effi-
cient scheduling of medical services [7]. Several Quality of Service (QoS) techniques 
have been introduced. The needs of various techniques may be distinguished based 
on the unique service parameters and measures of e-healthcare apps. The applica-
tions may include multimedia conferencing, transmission of physiological indica-
tors, high-resolution medical imaging and picture transfer, clinical transmission, and 
administrative data accessibility [8].
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15.2.2 Effective Calculation of Medical Data Processing 
and Optimization of Service Delivery Solutions 
in E-healthcare Applications 

Recently, the issue of ensuring high-quality service and efficient data processing in the 
healthcare sector has become a significant challenge in various research fields, such 
as meta-heuristics, machine learning, artificial intelligence, and deep learning [9– 
12]. These techniques are applied to medical data and records stored in hospitals [8, 
13]. The collection and pre-processing of medical data in healthcare is a crucial task. 
It involves gathering data records from three main sources: clinical trials, medical 
research-related records, and organizational data operations [14]. The latest trend 
in smart healthcare is the advanced development of computer-based assistant aids 
and real-time platforms for examining, analyzing, and utilizing acquired data. This 
includes the assessment of quality-of-services [15, 16]. The authors comprehensively 
analyzed medical-data computation and service-delivery optimization in healthcare 
in [17]. The study analyzes essential healthcare data, including patients’ medical 
histories, illness prediction, preventive measures, health guidelines, and medical 
assistance for the elderly. These records enable decision-making based on emer-
gency situations, cost-effectiveness, and improved efficiency. The present study has 
introduced and implemented diverse probabilistic and adaptive Quality of Service 
(QoS) frameworks, which efficiently schedule medical data at a lower cost. These 
frameworks have been applied in various medical settings [17, 18]. A novel approach 
to health analysis and prediction has been recently proposed. This method utilizes 
certain quality of service (QoS) characteristics and quality of experience (QoE) 
mechanisms in real-time. In their study, the authors of reference [19] introduced a 
novel approach called IoT-fog enabled multi-route for processing and computing 
medical data. This approach aims to improve the efficiency of real-time medical 
delivery and optimize the management of healthcare records logs [20]. A multitude 
of academics have employed metaheuristics to optimize medical services that involve 
multi-channel pathways and service delivery via healthcare applications [21]. Zhao 
and Huang [22] proposed a novel design for a fog-based microservice container 
system. This architecture aims to efficiently execute sensitive applications and accu-
rately measure transmission delays, while minimizing costs [22, 23]. Furthermore, 
this work examined the challenges and constraints associated with cost-effective job 
scheduling, specifically focusing on heterogeneous fog servers [22, 24]. In order to 
achieve this objective, several specialists have put forward various novel adaptive 
techniques. One potential solution that is of concern is a cost-aware computational 
offloading and task scheduling architecture. This architecture offers task scheduling 
solutions through a series of processes, such as task scheduling.
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15.3 Smart Medical Services Quality Evaluation System 

The utilization of intelligent technology has led to significant divergence in the eval-
uation criteria for service quality between smart medical care and traditional medical 
care [25–27]. To the best of our knowledge, there are few methods available to assess 
the efficacy of smart medical devices. To address this research deficiency, this study 
conducted a thorough examination of existing literature to identify key indicators for 
assessing the effectiveness of smart medical services. Additionally, a comprehensive 
methodology was developed to evaluate the quality of these services. This research 
initially formulates six aspects after reviewing current literature and assessing the 
service quality of smart medicine. These dimensions are smart appointment, smart 
consultation, smart diagnosis and treatment, smart nursing, smart settlement, and 
smart healthcare. 

15.3.1 Smart Appointment 

A smart appointment is a method by which a patient may plan a visit with a certain 
physician, choose a convenient time, and find the hospital. This is done by creating 
a personal profile using their ID card or medical insurance card on a smartphone 
or computer. In contrast to the conventional procedure, patients are not required to 
wait in line at the hospital for registration. Consequently, the implementation of smart 
appointment systems can greatly reduce the time patients spend waiting and decrease 
the labor costs for the hospital. This, in turn, enhances the efficiency of hospital 
management and improves the overall experience and satisfaction of patients. 

The utilization of the “mutual health data bank” in the outpatient process 
enables the implementation of intelligent outpatient procedures. Internet appoint-
ment scheduling should be considered a crucial factor in assessing the effectiveness 
of smart appointment systems [28]. In order to ensure the information security of resi-
dents using the smart medicine service platform in Turkish hospitals, it is necessary to 
establish a service platform information security guarantee system that complies with 
the relevant national security guarantee standards [29]. An authentic identification 
system need to be implemented, requiring citizens to undergo real-name registration 
and documentation using their ID cards or health insurance cards. Patients using 
a smartphone application to schedule appointments should also be given the GPS 
coordinates of the hospital and map directions. This would help them save time by 
avoiding unnecessary diversions. Real-name archiving and smart navigation are two 
crucial aspects to consider when evaluating smart appointment systems. A study 
found that sending a short message service (SMS) reminder before a physical exam-
ination can successfully decrease the number of missed appointments and increase 
the rate of real examinations and satisfaction with appointments. According to the 
findings given above, there are four indicators established for smart appointment:
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real-name registration and archiving, Internet appointment, appointmen reminder, 
and intelligent navigation. 

15.3.2 Smart Consultation 

Smart consultation is a system that allows patients who have scheduled an appoint-
ment online to check their place in the waiting list, the current calling status, and 
the average waiting time before arriving at the hospital. Patients who have not made 
an online appointment can use a multi-functional self-service terminal to make an 
appointment on-site. SMS reminders have been found to enhance appointment atten-
dance, medication adherence, and behavior modification for a range of healthcare 
concerns [30]. An appointment queuing call system with a unified serial number 
database can be established for various appointment services at the hospital, including 
telephone, SMS, online, and self-service appointments. This system can be developed 
by analyzing the consultation process and its characteristics. Implemented cutting-
edge service models by constructing a 3D reservation service network, establishing 
an intelligent triage call system, and extensively integrating self-service options. The 
model included comprehensive window service activities and facilitated the integra-
tion of outpatient clinics, resulting in enhanced visiting conditions and experiences. 
This approach significantly enhanced the quality and efficiency of outpatient services 
[31] (The Smart medical services quality evaluation system is shown in Fig. 15.2).

According to the literature analysis provided, smart consultation involves patients 
participating in both online and in-person consultations. With the aid of advanced 
technology, the majority of hospitals have developed their own comprehensive infor-
mation platforms that include self-service terminals. These terminals allow for real-
time data updates. Additionally, hospitals have implemented calling systems that 
are connected to the appointment platform, which assist in guiding patients. The 
Internet-based consultation model is more efficient and effective than the traditional 
consultation process, since it improves all aspects of the process, making it more 
logical, intelligent, and sensitive to patients’ requirements. There are five metrics 
that are established for smart consultation: online waiting order, online call question, 
average waiting time, self-service registration, and triage call. 

15.3.3 Smart Diagnosis and Treatment 

Smart diagnosis and treatment involve utilizing advanced technological tools to 
enable patients to undergo different operations and get services. The use of the 
one-stop inpatient care paradigm promotes efficient treatment delivery and enhances 
the patient experience. This approach successfully mitigates extended waiting times 
caused by preparation issues [32]. By integrating this platform with the current infor-
mation system, the scope of information creation was expanded to include bedside
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Fig. 15.2 Smart medical services quality evaluation system

access, enabling patients to immediately access information. The technology has 
significantly enhanced the inpatient experience and the effectiveness of medical care, 
while also offering data support for hospital administration [33]. 

According to the literature review provided, smart diagnosis and treatment 
includes the first consultation with outpatient doctors, as well as the processes 
involved when a patient has to be hospitalized and after they are admitted. The 
patients’ perception of smart medicine, which integrates medical treatment with 
modern technology, primarily encompasses doctor-patient communication based on 
information, timely notification of diagnostic test results, efficient scheduling of non-
emergency surgeries, expedited self-check-in for hospital admissions, self-service 
hospitalization, streamlined referral services, and convenient discharge processes. 
This study establishes the following indicators for intelligent diagnosis and treat-
ment: doctor-patient contact, prompt notification of test findings, self-scheduling of 
surgical appointments, self-check-in, self-admission, and self-discharge.
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15.3.4 Smart Nursing 

Smart nursing encompasses the provision of precise care to hospitalized patients. 
This involves the use of advanced technology to accurately identify patients, as well 
as verbal and electronic communication from doctors and nurses. Additionally, it 
includes the implementation of automatic alerts based on various monitoring methods 
for infusion and injection management, bedside communication systems, and post-
discharge monitoring. 

By utilizing 5G technology, it is possible to create a full service platform called a 
digital ward. This platform includes a smartphone-based electronic medical record 
inquiry system and a wireless infusion monitoring system that relies on infrared 
sensing technology [34]. The wireless infusion monitoring system utilizes infrared 
sensing technology to track the drip rate and progress of infusion, therefore mini-
mizing the need for regular check-ups and enhancing efficiency. Conventional patient 
identification bracelets that are written by hand encounter several issues [35]. For 
instance, medication errors may occur when patients are incorrectly identified. 
However, by using a personal digital assistant (PDA), patients can be accurately 
identified through barcode-printed wristbands. This method ensures patient privacy 
and guarantees that the barcode information remains legible, even when patients are 
bathing or taking medication. Additionally, it has the potential to enhance respon-
sible nursing practices, guarantee nursing safety, decrease nursing time, and enhance 
patient satisfaction [36]. 

This study establishes five indicators for smart nursing: patient identity check, 
inpatient medical order execution, infusion and injection management, patient 
bedside calling, and post-discharge follow-up. 

15.3.5 Smart Settlement 

Smart settlement refers to the procedure in which patients may recharge and settle 
payments using medical insurance cards using self-service machines located in 
hospital lobbies, consultation rooms, or bedside platforms. There are several methods 
for recharging and settling medical insurance cards, including at least one of the 
popular payment platforms such as We Chat, Alipay, and UnionPay. 

The use of the “Internet+” settlement method has the potential to assist hospi-
tals in adapting to the advancements in Internet-based care. It can enhance patient 
experience, streamline settlement processes, and elevate the level of hospital admin-
istration [37]. The integrated “Internet+” medical platform aims to enhance the effi-
ciency of appointment scheduling, registration, payment, and inquiries. It also aims 
to optimize the use of network technology for diagnosis and treatment, procurement, 
logistics, and follow-up visits. Furthermore, it enables real-time reimbursement from 
medical insurance companies and facilitates real-time claims for compensation from 
commercial insurance companies. One of the primary strategies for enhancing the
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experience is to decrease the number of settlement excursions. In order to enhance 
convenience, it is necessary to introduce a wide range of payment methods and 
implement advanced payment technologies. Additionally, the benefits of Internet 
technology should be utilized to streamline and customize the settlement process, 
establish flexible payment channels, and minimize the need for physical transactions, 
all while ensuring the security of funds. 

According to the literature research provided, six indicators have been established 
for smart settlement. These indicators include real-name pre-deposit, medical insur-
ance real-time network settlement, outpatient payment, payment methods, inpatient 
prepayment, and self-service printing. 

15.3.6 Smart Healthcare 

Smart healthcare encompasses the range of health services offered by hospitals to 
both pre-treatment and treated patients. These services include health education, 
dissemination of health information, provision of health consultation channels, and 
the creation of electronic health records for patients. Smart healthcare primarily caters 
to individuals with health needs, offering them the necessary health information. 

Patients who test positive during consultation are likely to have a pleasant medical 
experience [30]. Providing health education on the specific illnesses to patients and 
their families during outpatient infusion and treatment can significantly reduce their 
anxiety and enhance their trust and cooperation, ultimately leading to improved 
patient satisfaction [38]. The adoption of the “Health Education Mobile Course” 
program resulted in a 3.65% improvement in overall patient satisfaction. This 
program guides users in preventing or treating ailments such as colds by helping 
them acquire fundamental medical information [39]. Electronic health records have 
the potential to provide advantages for patients, providers, and public health [32]. 
Furthermore, physicians can utilize the information supplied by other healthcare 
professionals, establish remote access to medical data, send reminders for service 
requirements, monitor electronic prescriptions and potential medication interactions, 
and employ clinical information for research purposes. 

15.4 Technological Challenges: Emerging Obstacles 
in the Digital Era 

One of the technical challenges of smart healthcare is the hospital information 
technologies. The second important challenge is the ubiquitous health information 
system. This is the core enabling technique of smart healthcare, allowing people to 
receive ubiquitous healthcare services at any time, place, or situation. IoT operated 
by sensor networks, cloud computing, and mobile device platforms offers infinite
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patient health benefits [33]. They are pervasive, real-time health monitoring, remote 
assistance, health self-management, and effective application, among others. The 
capability of pervasive, real-time health state measurements is directly related to 
the intelligent algorithm to extract meaningful and effective information. This is 
also a critical intelligence attribute for telehealth management purposes [34]. Other 
social systems, such as human mental barriers and public perception-hospital IT 
system, also influence the utilization of the hospital IT system. An embodiment of 
this vision by accomplishing improving healthcare efficiency, lowering healthcare 
cost, enhancing healthcare quality, facilitating a comfortable living environment, and 
reducing medical staff workloads, and other attributes is the ultimate goal of smart 
healthcare [35, 36]. 

Smart healthcare is predominantly enabled by advancements in medical, biomed-
ical, and information technology fields. Ubiquitous computing and pervasive commu-
nication media have made it easy to attain high-quality medical care anytime 
and anywhere through internet-enabled devices [40]. Several challenges should be 
addressed to enable the promised smart healthcare as an ordinary lifestyle. This study 
elaborates on the enabling technologies of smart healthcare by creating a vision for 
healthcare enabled by smart healthcare and understanding potential technological, 
social, and economic effects of several potentially sensitive enabling techniques [41]. 

15.4.1 Interoperability and Integration 

Hence, a big question arises: “How can we realize the ability of different information 
systems in traditional e-Health Service, mobile e-Health service, smart elderly-caring 
service, and smart society service, allowing them to cooperate to such an extent that 
the different stakeholders can support their different goals?” A way of data sharing 
algorithm, especially patient’s electronic health record, among all stakeholders is 
described herein as a needed criterion in order to make the different systems, such as 
different subsystems, a sharing system of e-Health. Proper interoperability becomes 
a feature of the physical framework’s predefined structure and/or serves as a basis 
for institutional structures in the information sharing process with respect to patient 
care data and other stakeholders’ data, such as private data, counseling data, CDM 
data, and people’s health environment data. 

Interoperability and integration are among the main challenges for efficient imple-
mentation and management of a smart healthcare environment. In general, we can 
describe “interoperability” as the ability of systems or products to work with other 
systems or products without special effort on the part of the customer. It ensures that 
all systems remain working with minimum conditions to sustain a necessary data 
flow between the parts. Interoperability serves to create a whole new era of complex 
systems within the landscape of the smart health area.
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15.4.2 Security and Privacy Concerns Explored 

Given the constant of change in computer technology, no commitment can ever be 
forever. Although HTML-based and ID/password computer security has served us 
for many years, it needs to be upgraded with minimum added user online friction. 
Minimum adequate security is as relevant in today’s covered health systems as it is 
with smart healthcare systems of the future, with enhanced security mechanisms for 
enhanced sensitivity data. Tailor-made user-friendly tradeoffs are a realistic approach 
in the face of all potential compromised security. There can be no absolute security 
in more personal sensitive health delivery areas, i.e., personal health records held on 
the cloud, without potential harm in emergency health delivery mode. Furthermore, 
security and privacy assurance must be predictable, reproducible, measurable, and 
ultimately authoritative and proven. It can never be completely preventive, given that 
people will be the weakest links in the security chain. 

Security and privacy concerns are by far the biggest and most legitimate concerns 
which limit the very widespread use and growth trajectory of smart healthcare. When 
health data availability and utility is maximized, the security and privacy concerns 
become paramount as precious and sensitive personal health data may be exploited by 
insider or outsider adversaries. Perfect security cannot be achieved in practice and all 
security mechanisms, including passwords and physical biometric security measures 
alone or in combination, can be circumvented. So, tradeoffs must be made which 
balance security with user convenience, with the nature and sensitivity of the data, 
and the potential real or perceived public harm from limited data security. Therefore, 
the very essence in the debate about smart healthcare potential and deliverability 
and, by inference, the best strategy to be pursued, are health data security degrees 
and privacy protection measures which could be implemented. 

15.4.3 Enhancing the Measures for Ensuring Data Security 

Ensuring the security, confidentiality, and integrity (and linearity in audit data 
recording, i.e., knowing who saw what, when) of the information is key for public 
and academia adoption, as shown by public opinion toward the privacy breach of 
patient personal health records (PHRs). Types of Data exchanged and examples of 
multiple types (e.g., EMR and Personal Informatics (PIs) need different levels of 
security protection). Different types of systems and solutions used to provide health 
care, which introduces a level of complexity in managing the authorization of an 
infinite set of types, as well as subjects of data, operations (like read and write) and 
performing access control, and encryption and decryption [42]. 

The security of individual records is essential for the proper operation of the 
system. Patients will not be willing to come and share their problems if they think 
that their conversation will be available to everyone the next day. The idea is that 
records should prove useful today for the general public, and be made available,
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for instance, twenty years from now when it is safe to do so, making sure that 
any agreements the patient signed, referring to specific disclosures, are observed, 
but they should not be available today unless it is in the common interest, say, as 
part of a public health investigation. The challenge is exacerbated due to the abun-
dance and complexity of sources and types of systems involved in a distributed 
healthcare system that go as far as encompassing existing independently designed 
systems including: Provider systems (e.g., EMRs managed by individual institu-
tions), Regional Health Information Organizations (RHIOs) or Health Information 
Exchanges (HIEs) (e.g., connecting different provider systems), Public Health Infor-
mation Exchange (PHIE) System (e.g., managing information collected by public 
health agencies at city, state and national levels), and Personal Informatics (e.g., 
personal wellness data, such as fitness-of-the-individual data like physical location, 
and temperature sense data) reports [43]. 

15.4.4 Exploring the Ethical and Legal Considerations 
Surrounding the Issues 

Despite the widespread use of the term eHealth and telemedicine, it is not always 
easy to compare and evaluate what is on offer as much of it is poorly evaluated with 
outcomes that are at best of dubious benefit. The quality of the advice provided is 
almost never evaluated. Would it stand up to scrutiny by an in-depth peer review 
process? Many contain basic errors. Access to this high-quality medical information 
may itself exacerbate inequalities and health as web-based information tends to be 
targeted more to the empowered and the well-educated. Currently, lack of any form 
of regulation or evaluation can result in great heterogeneity in the quality of service, 
from the excellent to the truly dreadful. With the ever-increasing specialization of 
modern medicine and the rapidly changing therapeutic environment, the ability to 
reflect critically on one’s standard of care is ever more an essential part of medical 
training. Can people utilizing web-based consultations and web-based sources of 
referrals ever know the level of themselves being offered? Web-based practice is 
by no means confined to healthcare professionals based solely in middle and high-
income countries. It is therefore important to consider a global response to these 
problems. Underlying these challenges is the commitment to apply the principles 
of beneficence, non-maleficence, autonomy, and justice into virtual practice as it 
becomes an integral part of 21st-century healthcare [44]. 

In any community and healthcare systems, highly competent health professionals 
and appropriate access to these professionals are essential. In almost all countries, 
increasingly healthcare systems are facing problems of scarce resources and financial 
concerns. The web-based communication between patients and healthcare profes-
sionals can provide a low-cost tool to deal with such situations. However, online deci-
sion making has up to now been kept at a low, asynchronous, information-seeking 
level. The offer of opportunity for an electronic consultation service to address and
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resolve clinical cases in real time represents a major ethical challenge. The problem 
of the wrong use of the service in inappropriate conditions illustrates the difficulties 
of applying ethics and legal duty in virtual territories. The international tendency for 
raising the quality of health services according to pre-established protocols further 
complicates problem-solving in this particular area. The laws providing good clinical 
practice apply to experts independently of the medium of use and national bound-
aries. The lack of public standards for giving good quality can influence the quality 
of services [45]. 

Solution: Informed Consent and Ethical Obligations 

Therefore, ‘informed consent’ is an important concept for protecting patient privacy 
in actual smart healthcare services using IoTs to constantly collect personal health 
data without patient intervention. In smart healthcare, physicians can form a patient’s 
health-related viewpoints only with a patient’s consent. Gathering patient consent 
for data sharing and integration is important not only for preventing disputes but also 
for building the trust that should be in the relations among patient, physician, and 
medical data integrator in smart healthcare services. Informed consent belongs to 
the ethics of personal privacy and self-determination, and it involves transparency, 
risk administration, and strengthening autonomy. Therefore, transparent methods for 
obtaining patient informed consent are needed [46]. 

The IoT can be used to create digital records of patient data that enable physi-
cians to provide medical services. Although smart healthcare solves many problems, 
it provokes many issues because this unprecedentedly great collectivity and variety 
of patient health information can be integrated for physicians. Especially, if patient 
data is integrated and used in a way that patients do not know or be able to control, 
medical institutions or stakeholders can unilaterally make and hide decisions and all 
sorts of misuse that infringe on patient privacy can occur. Current medical information 
privacy legislation applies not only to health information recorded by medical insti-
tutions but also to health information gathered by health devices, but often patients 
sometimes cannot identify who and what data he or she want to control or cannot 
effectively control data integration and usage due to an information asymmetry 
caused by the newly appeared stakeholders [47]. 

15.4.5 Regulatory Hurdles and Compliance Challenges 

The fact that the decisions made by the systems used in smart healthcare should 
be convergent should be evaluated at the individual patient’s expense, the interests 
of the community, and the quality of health. This gray dilemma becomes more 
vivid when lawyers and ethicists in the courts try to judge the vicissitudes of system 
failures. However, reaching a more technical level, this problem should also question 
the reliability of the operating technique used, which must also satisfy technical, 
scientific, and engineering requirements since it must be recognized as a powerful 
tool by the interlocutor who listens to it. There comes the problem of concepts related
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to the risk of genetic and iatrogenic risk that has even a different weight in calculations 
depending on the assessment of who paid for the so-called comfort treatments. For 
all these reasons, it is not possible to conceive of the development of applications of 
computer intelligence in medicine without an analysis of the implications, also on an 
ethical level, of the cultural implications, which will be faced with the pervasiveness 
of new technologies in our lives. The economy of the health budget, in reality, imposes 
it [48]. 

The smart healthcare concept encounters regulatory hurdles, just like in other 
healthcare-related businesses. In addition to accountability and closed-loop control, 
the concept raises questions such as who is responsible if the smart healthcare system 
makes a mistake or error, who is responsible for unjustified or even failed kidney 
removal or heart bypass because of smart healthcare technologies. Such questions 
cannot be easily answered, playing on ethical questions not only on technology but 
in a broader plan, by challenging the control of physicians, by allowing machines 
to make suggestions about health problems, lab test results, diagnosis, treatments, 
and therapy. The situation is exacerbated if the smart healthcare system happens to 
be made by a private company. This will further push the health system to consider 
problems of healthcare in the public–private partnership [49]. 

Solution: Compliance with Healthcare Regulations and Implementation of 
Regulatory Requirements 

Legislation and technical requirements are placed on hospitals and ambulatory 
centers to ensure the provision of good quality services. These requirements are 
specific to the nature of patient care processes and patient characteristics. Often, these 
requirements are open to interpretation by those subject to them, and organizations 
may be vulnerable to adverse litigation or prosecution. The growth in the number 
of regulations and pressure for compliance stems from concerns of employees, their 
families, and society at large regarding the safety, quality, and regulatory compliance 
of health services. Even with regulatory measures attempting to enforce the quality 
of healthcare services, the effects have been mixed in terms of achieving improve-
ments. The issue at hand is how these laws and processes achieve their objectives. 
Wouldn’t it be more effective to employ ‘softer’ approaches in healthcare services? 
[50] 

Huge amounts of administrative and technical infrastructure are required to ensure 
that healthcare providers operate within a legal framework of satisfactory quality and 
comply with regulations in healthcare operations. This concentration on compliance 
increases the cost of healthcare. The challenges to health service regulations are not 
just from the delivery of health services, but also reflect changes in the law and society. 
Over recent decades, changes in health services regulations have been evident in 
several countries. The reasons for these transformations have been varied and include 
the growth of new technologies, changes in the level of knowledge and awareness 
among wide audiences, and a re-evaluation of traditional models of medical care, 
as well as financial and economic tendencies in managing the health system and 
strengthening state control to the detriment of medical profession autonomy [51].
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15.4.6 Challenges Faced in the Management of Data 

With the rapid increase in the volume of digital data, such challenges are likely to 
grow more acute, and in-depth studies on data exchange metrics, security protocols, 
and possess more appropriate recommendation tools may be needed. Gu and Niakhail 
proposed the means to reduce the plethora of data, with a possible technique of using 
ID photographs and recommendation software tools to present some possible pieces 
of data within the realm of the subject. These include diagnosis, therapy contract, 
and care of the present patient, spatial resolution, position inside a chest CT exam, 
radiation dose verification, and casual information that could impact the diagnostic 
process. They apply data-driven and biological concepts to solve the problems of data 
noise detection and cleaning in these medical image examples. They showed that the 
existing data has mislabeled errors and noise, which may cause biased or incorrect 
conclusions. Their proposed method assigns small masses to missing data labels and 
then removes these extra categories, and then analyzes the results. However, investi-
gation in these areas is still in its infancy, and Internet of Things (IoT) technologies 
possess unique prospects and challenges compared to traditional data management 
tools used in healthcare [52]. 

One of the most challenging issues in smart healthcare is data integration and 
data management. The heterogeneous characteristics of the collected data, such as 
various formats, storage, access interfaces, and authentication mechanisms, must be 
supported. Moreover, to maximize the useful information out of the complex data 
and to build quality of services in smart healthcare, data analysis and management 
techniques are required. This would involve data mining, analysis, capturing, and 
divergence in larger data systems, as is the case in healthcare big data. However, big 
data in the healthcare domain poses huge issues and roadblocks, including medical 
data security and privacy challenges, lack of data quality means to get knowledge 
and information from this big data, as well as data mining algorithms that require 
high-performance computing and computing capabilities and machines, to name just 
a few. The five main big data scenarios are as follows: 

Solution: Big Data Analytics 

1. Private practice of healthcare: – The increase in data acquisition through elec-
tronic health records and monitoring devices. – Implementation of collaborative 
care methodologies. – Improvement in hospital data tools and utility methods. 

2. Artificial Intelligence provides healthcare services: – Deep learning, natural 
language processing, and computer vision label medical data. – Data-enabled 
personal health data promotes personalized healthcare. 

3. Hospital-based analytics services: – Use of patient data to create timely responses 
in treatment, diagnosis, and monitoring of patients. – Utilizing the data extensive 
electronic health record systems for research using cloud-based solutions without 
releasing the actual dataset of patients.
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4. Healthcare research with big data: – Biomedical research data is integrated with 
clinical data. – Data-driven discovery solutions to accelerate pre-clinical and 
clinical research. 

5. Big data infrastructure to improve patient outcomes: – Improvement in big data 
strategies and methodologies. – Controls and regulated industry partnership 
models. 

Big data in the healthcare system occurs due to accessibility to a vast amount, wide 
variety, and volume of data, which is structured, unstructured, real-time data, and 
stored in various forms. It can benefit greatly from the innovative analysis and eval-
uation of healthcare issues and data. The vast availability of data storage, advanced 
technologies, and device connectivity has led to future healthcare industry growth. 
Every day, a vast amount of data is produced in healthcare organizations, such as 
patient data, data sets, and clinical monitoring data. In medical practice, electronic 
health record datasets have become the main source of clinical data that is released on 
a day-to-day basis, enabling the provision of healthcare services at any time from any 
hospital, laboratory, doctor’s office, clinic, or any telemedicine solution. Responses 
to large volumes of healthcare data have resulted in the development of several data 
analysis methodologies that allow the study of the enormous dataset of patient data 
and the extraction of useful information. These innovative studies have increased the 
value of healthcare organizations’ patient databases without developing the required 
infrastructure [53]. 

15.4.7 Integration with Traditional Healthcare Systems 

The QoS model in smart healthcare mentioned in previous chapters is defined by 
referring to the definition of QoS in ITU-T Recommendation E.800, but more 
problem cases raised in smart healthcare are not explored in detail. Therefore, this 
study mainly investigates the challenges and open issues for QoS in smart healthcare. 
Moreover, as more and more smart healthcare systems integrate existing traditional 
healthcare systems, QoS issues on the integration of smart healthcare systems and 
traditional healthcare systems must be noted and solved. In recent years, the contin-
uing development of smart healthcare, particularly when coping with the issue of 
global aging and the related problem of big data, has attracted considerable attention 
from both industry and research communities and has been an innovative challenge 
milestone in the Telecommunication Industry Innovation Roadmap (TIIR) in China 
[54]. 

In this chapter, we investigated various challenges and issues for QoS in smart 
healthcare. Key challenges and issues identified include data storage and manage-
ment, data sharing and collaboration, device-to-device communication, medical 
resource management, middleware and infrastructure, near-field communication 
technology, reliability, security and privacy, and service level agreements. For each
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category, the current status and related works are summarized. In addition, the chal-
lenges, open issues, and implications are also given to provide more inspirations 
to researchers in the field of smart healthcare so that an efficient and reliable data 
processing and communication system can be developed to satisfy both healthcare 
providers and consumers. 

Solution: Benefits and Challenges 

The big data that will be created by IoTs in smart environments will soon (if it is not 
already) exceed the capacity of the existing hardware systems as much information is 
required for efficient processing. Moreover, healthcare infrastructures must guarantee 
data security while facing hack attacks. The main challenge is transferring knowledge 
and decisions into practice, to develop sensor technologies that are economically 
viable for healthcare providers. While the rapid increase in information is becoming 
a pressing problem, the ability to store, process, and analyze huge amounts of data to 
gain insight is becoming a key competitive differentiator. A scalable architecture that 
is able to be built quickly and stably to deliver healthcare services over the network is 
therefore a second major challenge. This crucial requirement arises from the necessity 
of developing a flexible ICT infrastructure that is capable of adapting rapidly to every 
medical requirement. The architecture should be scalable and designed to provide the 
best trade-offs among communication, computing, and storage resources for costs 
and needs. The scalable architecture can manage large quantities of data and can 
optimize the volume and structure of the computational power and storage capacity 
of servers. Additionally, this architecture can protect against IoT risks; this type of 
cyber attacks arises not only from the possibility of exploiting the communication 
infrastructure but also from the significance of the devices or equipment [55]. 

The smart healthcare environment combines IoTs, next-generation networks, 
cloud computing, and the latest technologies in healthcare to support the knowl-
edge and decisions of doctors and clinical staff and to enable a sophisticated supply 
of health and wellness. This environment facilitates the coordination of healthcare 
services that utilize advanced medical techniques and telemedicine. Although smart 
healthcare services offer valuable benefits, three main issues challenge the supply 
of a high quality of service (QoS) to medical staff and patients. These challenges 
are the large and rapidly increasing amount of healthcare information that requires 
storage and processing, the scalable architecture able to efficiently deliver health-
care services over the network, and the market competition leading to balancing the 
investment among the required technological infrastructures and services [56]. 

15.4.8 Human Factors and User Acceptance 

In conclusion, healthcare depends on the availability of useful devices and instru-
ments. In addition to leveraging the value of medical knowledge and training for 
a variety of diagnostic, surgical, prescription, safety, and prevention applications,
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devices and instruments are necessary for monitoring and supporting technical deci-
sions, handling, administration, transportation, and logistics. In this context, much 
applies to a wide range of activities and emerging medical applications, which may 
nowadays be undertaken away from traditional medical professionals and facilities. 
There is nonetheless evidence that patients across the world have developed some 
ethical, moral, cognitive, and technological responsibilities and like to be ‘working 
with their doctors’, who expect a wider role in future patient-doctor interactions. The 
question is how much effort is needed to help existing and forthcoming technologies 
establish a clinically valuable role in medical professional and healthcare services 
[56]. 

It is interesting to see the impacts that smart healthcare technology can deliver on 
patients’ and the general population’s perspectives, as well as healthcare practices 
and processes. Most people will readily benefit from the highest quality of health and 
medical services. They will not be suspicious of how healthcare service provision is 
organized and regulated, as well as the practical implications and technical require-
ments for service prescription, delivery, monitoring, and evaluation. However, it is 
also unquestionable that services should be cost-effective and respect users’ safety, 
preferences, and aspirations in all circumstances. The idea of being able to commu-
nicate with health services for professional advice and support at any time is not in 
the mind of everyone, but the delivery of this kind of service reflects an established 
reality that medical practitioners have. 

This chapter brings together some views on human factors and user acceptance 
of smart healthcare technologies in general. These concepts combine general knowl-
edge and understanding about engineering and technology in developing and deliv-
ering products and services to benefit human quality of life across various healthcare 
domains. Insights are discussed based on literature reviews, empirical case studies, 
and practical solutions toward human factors and user acceptance in developing and 
promoting emerging smart healthcare services in the coming years. Smart healthcare 
application areas to be discussed include patient-centered healthcare service delivery 
and personalized health and medicine technologies, such as personalized and predic-
tive health, ambulances, bio-sensors, mobile, stationary, body-worn, and implantable 
medical devices and systems. The chapter concludes by identifying some challenges 
and recommendations for R&D for human factors and user acceptance of smart 
healthcare services, suggesting future development in this active area of engineering 
and technology sectors. 

Solution: Training and Education 

Training is a critical cornerstone of ensuring quality functionality of any system in 
general. The training for the employees to use the ICT tools in a smart health-
care system can be critical for their acceptance and the quality of the services. 
However, there are still seldom educational training programs and teachers involved. 
The training of such a setting should be able to convey knowledge of how to use elec-
tronic medical records to conduct effective and efficient diagnoses, how to access 
other healthcare-related information from a variety of sources over the internet in a 
fast and reliable manner, or how to use the alarm services provided by monitoring
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devices to decrease the problem of attention (or cognitive) overload. Due to the nature 
of the content and level of specificity needed, an added worry is misinterpretation 
between participants that are equivalent in knowledge base with explicitly different 
educational backgrounds [57]. 

15.4.9 Financial Considerations 

To put it simply, in the broad context of the proposed factors affecting the quality 
of services of smart healthcare systems, financial elements must not be underesti-
mated. On the contrary, they must be taken into consideration at the same level to 
design, diagnose, treat, and improve health services. In the following subsections, 
we will expose the main concepts on available mechanisms for assuring the financial 
considerations at stake. 

Quality of services (QoS) must be maintained at a satisfactory level to ensure 
a secure healthcare application. The healthcare informatics system must fully 
cover private and confidential communication, data, information, and processing. 
Addressing these requirements often comes with a cost in terms of available function-
ality, performance to be met by the QoS, and measures to assure integrity, availability, 
and security of the information service or smart health application. Moreover, the 
potentially involved decision makers (i.e. healthcare professionals, patients, health-
care providers, and suppliers of relevant technology) must be aware and able to 
evaluate and accept these costs in view of their benefits [58]. 

Solution: Cost-effectiveness 

The cost of smart healthcare is of significance to the community. Here, the cost 
encompasses initial set-up, operation, and recurrent maintenance costs. Commer-
cialization of the service is hard to achieve if the costs are too high, especially in the 
current financial crisis environment. People or organizations need proof to believe 
that this new system is more affordable than the traditional way but with the same 
quality or better. Although the costs cover numerous aspects that other infrastructures 
have, the legitimacy of the smart healthcare solution somehow becomes a hot issue 
to be discussed, in which whether it is a luxury or a necessity is the root of argument. 
A good balance of providing quality services with the pressure from the bottom line 
has become a virtual inescapable dilemma [59]. 

Despite the existing interest and prospects for the smart healthcare paradigm, 
some important challenges that smart healthcare may confront should be carefully 
considered. These challenges might not only influence the success of its implementa-
tion and diffusion but also set obstacles to resolving the key issues raised previously. 
Major challenges for quality of services in the smart healthcare are discussed in the 
following section.
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15.4.10 Global Adoption and Cultural Differences 

It is important to consider various cultural issues before starting the deployment 
process of smart healthcare worldwide. Otherwise, if only a few countries accept 
only a few service items of the system, the productivity of smart healthcare may be 
suboptimal. The implementation study of global health technologies fundamentally 
involves culture and society, but there has been little scholarly attention given to 
in-depth discussions of this issue. As mobility increases and healthcare provision 
becomes a globalized commercial sector, the exchange of services, know-how, and 
medical personnel across national borders should not be taken for granted. Therefore, 
in addition to studying medical and clinical engineering issues in global health, which 
receive significant attention both domestically and internationally, we also need to 
explore the institutional settings in which different “smart” technologies, and the 
knowledge and information embedded in social practices of care, are used, owned, 
and applied. 

Cultural differences are a key issue in the global adoption of smart healthcare 
systems and technologies. Different cultures may have different attitudes and expec-
tations toward healthcare services. For example, different countries not only have 
various healthcare policies and systems, but they also have different treatment 
choices for similar diseases and symptoms. This can greatly influence the imple-
mentation of healthcare services such as telehealthcare, infrared sensor devices, and 
e-medicine, as well as the remuneration model of the smart healthcare system. As a 
result, customizing smart healthcare technologies and applications to meet diverse 
needs among various countries, and managing them like tourism, may present some 
challenges. On the other hand, a broad range of strategies should be focused on 
to encourage faster adoption of smart healthcare in order to shorten the time of 
implementation. Developing healthcare technology that fits within the cultural scope 
and aligns with the interests of healthcare service providers can certainly optimize 
healthcare development and improvement [60]. 

Solution: Cross-cultural Communication 

In fact, for a healthcare provider, understanding the patient’s actual complaints 
itself is a challenging task without cross-referencing their personal medical records. 
Understanding the differentiating signs, symptoms, and queries posed for interpre-
tation are necessary to provide the most accurate diagnosis. The communication 
process invokes the facets of social, emotional and psychological factors regulating 
the relation between patient and healthcare professionals. According to a study 
carried out in the UK, the communication gap was identified as a factor responsible 
for complaints against healthcare providers. The smart healthcare communication-
related challenges are unlimited as the links between patient and healthcare increases 
the patient’s perception of healthcare and healthcare quality. Though it directly links 
caregivers and patients, some typical limitations of smart healthcare include commu-
nication pattern analysis, patient adaption over the length of clinical relationship, and
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healthcare customizations as per the cultural, language differences portrayed by the 
patient. 

The seamless communication between healthcare providers and patients is signif-
icant for good patient outcome in relation to compliance and satisfaction with their 
medical treatment. Smart healthcare, by functioning beyond geographical boundaries 
with no requirement for face-to-face interaction, poses many challenges associated 
with cross-cultural communication between healthcare providers and patients. The 
patients’ direct contact with healthcare professionals, expertise of healthcare profes-
sionals for treatment procedures, and capacity for understanding comprehension 
while addressing medical terms used for communication are indeed hindered [61]. 

15.5 Future Trends and Innovations 

We do not need to list them all here; everyone is aware. We have gained valuable 
experience through the coronavirus pandemic. We know that quality of service in 
health issues is not dependent only on personnel numbers and technical equipment 
capability. Infrastructure and leadership/strategy are key factors in care for patients 
with different scales of health problems, and we are supporting that advances in ICT 
are strategic in providing this care. Today, telehealth is a subject that is in our health-
care plans. The capability to provide a consult through video links, SMS messages 
and teleconference anytime and anywhere is not futuristic, but it will expand in the 
care of patients after COVID-19 ends. At other more advanced stages, intangible 
innovation will exploit AI with Blockchain, leading to personalized and traceable 
solutions. The advent of a new fifth generation of high-bandwidth mobile commu-
nications, not just within the confined space of a hospital or clinic, but for everyone 
anywhere, is fundamental in providing value added to healthcare in general and 
especially to chronic disease control [45]. 

Introduction, Future Trends and Innovations of Healthcare is an area where 
services have generally been proven to be somewhat slow in adapting to the speed 
of technological change. Society has high levels of faith in technologies to cure 
diseases and provide longer and healthier lives, but not necessarily in ensuring that 
these benefits reach them. As discussed in the opening chapter, and as shown again 
in Fig. 15.1, society has other important issues that are associated with technological 
change in the area of health. 

15.6 Summary 

The integration of cloud and mobile application is a basic need for smart medical treat-
ment. However, the personal data security, privacy protection, full availability during 
emergency situations, continuous monitoring, and constant technical improvements 
need to be carefully maintained with security, reliability, low cost, and especially



References 373

high QoS. The activity in this study will be helpful for various stakeholders and 
policymakers in the medical field to deepen their understanding of what they should 
consider when they need to commission and create the IoT smart healthcare system. 
The results of this proposed strategy and implementation in cloud-based mobile 
medicine can be used as a reference for related society of public and private smart 
healthcare projects. The policy alignment and stakeholders’ societal safeguards can 
be employed to meet all the potential human committed goals for equity, ethics, stake-
holders’ programs, and the urgency of continuous monitoring with major projects 
that are health-related. Therefore, from the view of the stakeholders, they can gain 
due planning of the quoted testbed in the day-to-day project or in the self-assessment 
of a smart medical project. The IoT smart healthcare system program ultimately 
needs to be meaningful and prioritized as part of the national or district government 
policies for stakeholders’ dedicated hands-on expression. 

The expansion of the IoT has affected various sectors, including medical care. 
IoT-equipped healthcare systems that use wearable devices, various medical sensors, 
security and privacy systems (RFID, NFC), and communication modules are devel-
oped as smart medical systems. The question is how these features are interconnected 
through cloud computing systems to create smart medical systems. From the user’s 
point of view, features such as power efficiency, security and privacy, user-friendly 
design, safety standards, social and technical risks, clearness of responsibility, relia-
bility, and data quality are important. Ultimately, the performance of the IoT medical 
platform in these respects affects the quality of service for the smart healthcare 
system, and ensuring high quality of medical care is essential. Furthermore, the 
global populations of elderly people is increasing, and these groups need reliable, 
effective, and high-quality healthcare services. The challenges and issues in this 
respect points will be carefully investigated as a part of the IoT medical platform in 
this study. 
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